Can we use transferrin to deliver metals to cancer cells that would be lethal to those cells? (ruthenium-imidazolium)

- Tumor cells need more oxygen because they are growing so fast
- Cells have overabundance of receptors on their surface for transferrin, an iron transport protein
- Lauren Benson's Trojan Horse Project

Transferrin

- Transports Fe(III) to many types of cells
- Two structurally similar lobes
- Fe(III) binds in each lobe
- Fe(III) only binds when accompanied by a synergistic anion, typically carbonate

Transferrin

Cellular uptake of transferrin

- Diferric transferrin binds to receptor proteins on the cell surface
- Enters the cell in a vesicle with low pH (~5.5)
- Fe(III) is released
- Apoprotein and receptor are transported back to cell surface, where they dissociate at extracellular pH (~7.4)

Transferrin and its receptor

Ruthenium binds to transferrin

- Using X-ray crystallography it has been shown that ruthenium binds to the imidazole ring of the His residue in the metal-binding site
- This binding is facilitated by the loss of a chloride ligand
- [RuInd₂Cl₄]⁻ retains its activity against colon cancer cells when bound to transferrin

Metal-binding site

rabec, 200

Hartinger, 2005

[RuInd₂Cl₄]⁻

Ruthenium binds to transferrin

- In blood, transferrin is only about 30% saturated with iron
- Other metals can bind to transferrin
- Ruthenium is similar to iron (group VIII of the transition metals)
- Ruthenium can be transported to tissues as a ruthenium-transferrin complex

H ¹		Periodic Table of the Elements															He
Li 3	Be ⁴											В 5	C	N ⁷	0 8	F	Ne
Na Na	Mg											Al	Si	15 P	S ¹⁶	CI	Ar
K 19	Ca ²⁰	SC ²¹	Ti ²²	V ²³	Cr	M	Fe 26	27 0	28 Ni	Cu ²⁹	Zn ³⁰	Ga ³¹	Ge ³²	As	Se ³⁴	Br	Kr
Rb	Sr Sr	39 Y	Zr	Nb	Mo Mo	143	Ru	∫'µ	Pd	Ag	Cd 48	49 In	Sn 50	Sb	Te ⁵²	53 	Xe
Cs ⁵⁵	Ba	La	Hf	Ta	W 74	Re	Os	Ir	Pt 78	Au	Hg ⁸⁰	81 Ti	Pb	Bi	84 Po	At	Rn 86
Fr	Ra Ra	Ac Ac	Unq	Unp	Unh	Uns	Uno	Une	Unn								
			Ce ⁵⁸	59 Pr	Nd	Pm	Sm 62	Eu	Gd ⁶⁴	Tb	Dy 66	67 Ho	68 Er	Tm	Yb 70	71 Lu	
			Th	Pa Pa	U ⁹²	Np	Pu	Am	Cm ⁹⁶	97 Bk	Cf 98	Es	Fm	Md	102 N O	103 Lr	

Preferential distribution to tumor cells

- Tumor cells have a higher requirement for iron
 - There are more transferrin receptors on tumor cells than normal cells
- Ruthenium is distributed in tumor tissue in levels higher than normal tissue
 - e.g. 5-fold that of muscle
- Ruthenium bound to transferrin is preferentially distributed in cancer cells

Preferential distribution to tumor cells

Figure 1. Preferential selective deposition of ruthenium ions by transferrin transport.

Activation by reduction hypothesis

- Tumor cells rapidly use oxygen and other nutrients
 - Low levels of oxygen in tumor cells
- Tumor cells rely on glycolysis; generate lactic acid
 - Low pH in tumor cells
- The relative electrochemical potential inside tumors is lower than the surrounding normal tissue
- Reduction of Ru(III) to Ru(II) is favored in tumors
- Ru(III) complexes serve as prodrugs
 - Administered in an inactive or less active form {Ru(III)}
 and metabolized in vivo into the active form {Ru(II)}

Ruthenium anticancer mechanisms

- Ruthenium complexes function differently from platinum (II) compounds, hence altered activity in tumor cells
- It is generally accepted that their cytotoxicity is related to their ability to bind DNA
- Binding may not affect DNA conformation
 - Ruthenium atom is coordinately bound to DNA while ligands are cross-linked to topoisomerase II

Excitation of Ru(bpy)2+

