1. Ch 15, 16. & for Hör + benzene = 1.24 × 10-12 cm³ melecule see

1124 x 10 -13 pet x 1000 xt, x 6.022 x 1023 molice = 7,47 x 108 L mod -1 sec - 7,47 x 108 M -1 sec -1

18. $ZI^- + S_2C_8^{2-} \longrightarrow I_2 + ZS_{C_4^{2-}}$ 9. conc. vs mittal vate data => $Z \times (I^-) \Rightarrow Z \times \text{vate}$ $Z \times (S_2C_8^{2-}) \Rightarrow Z \times \text{vate}$

rate = $-\frac{d[S_i o_8^{2}]}{dt} = -\frac{d[I]}{dt} = k[I][S_i o_8^{2}]$

5. 3.91 × 10⁻³ M⁻¹see⁻¹ for first 4, 3,89 × 10⁻³ M⁻¹see⁻¹ for 5th the average is 3,91 × 10⁻³ M⁻¹see, but conc. data has only 2 sig figs, so 3.9 × 10⁻³ J₂e⁻¹ (kind of a sittly exercise - sory.)

20, 9. 1st-order in each ; 5. rate = le (H6)[co]

c. le = rate (Hb)[co)

0,280 mm sec 1 1st set ch data 0,281 2nd

are = 0,280 MM sec-1

× 106 MM = 0,280 × 106 M - sec-1 = 2,80 × 105 M - sec-1

d. plug 'n' chug --.

init. rate = 2.26 mM sec 1

(= 2.26 × 10-6 M sec-1)

29. There plot of In(A) us + => 1st-order rxn, rate = k(A) Integrated rate law: In[A] = -kf + In[A]o 5/cpe = -k = -2.97 × 10 -2 mm-1 se h = 2,97 × 10-2 mm -1 × 1 mm fosee = 4,95 × 10-4 sec-1

b. th = 12 = 1400 see = 23.3 mm

In(EATE) = let Plus m k, EDJ = 2,00x10-7M + (A) = 7,50×10-3M

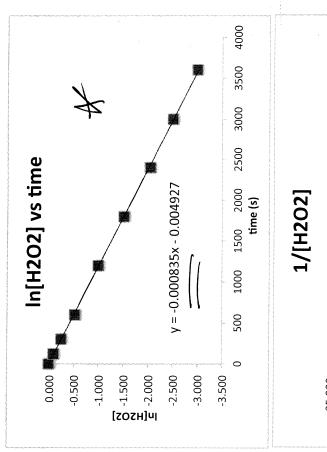
=> f = 4200 sec = 70 mm

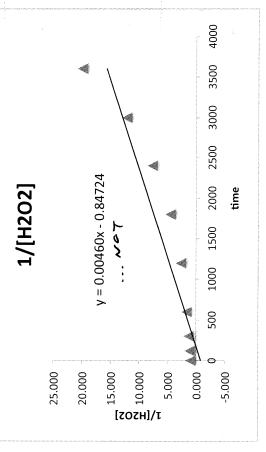
also note that 0.25×10-2 M 75 1/8 ruit conc. so exactly 3 half-lives gets the rxn to this point.

be m days.)

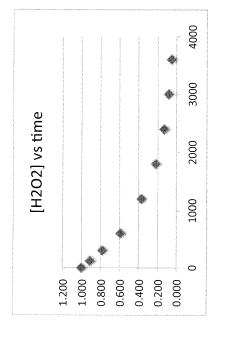
40, 32p "beta-decg" e + 325

tyz = 14,3 days => k = 1 = 0,0485 day 1 / I'll leave this m units of per day small we we will probably want will probably In([A]c) = let

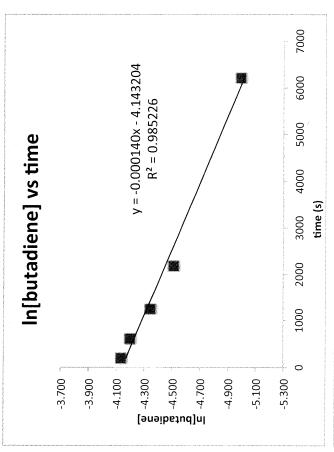

for 95% decay, " $\{\theta\}$ " = 5% be manys so this value is 20 $f = 61.8 \, days \left(\frac{1}{30.437 \, days} = 2.03 \, man \, fhs \right)$

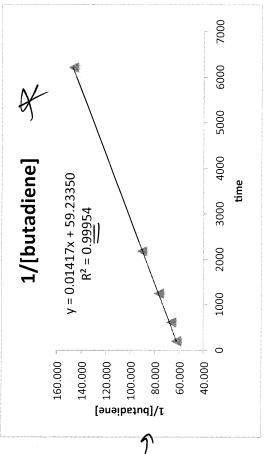

Hu set 9 - gr.

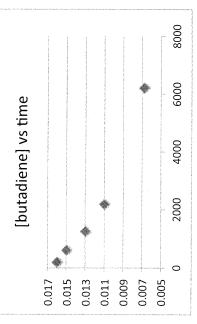
2. Ch 15 31. If 1st-order, a plot of In [HzCz] us t will be Innear (In [HzCz] = -let + In (HzCz)o)


If 2nd-order, a plot of (HzCz) us t will be linear

(HzCz) = let + (HzCz)o)




1/[H202]	1.000	1.099	1.282	1.695	2.703	4.545	7.692	12.195	20.000	
In[H2O2]	0.000	-0.094	-0.248	-0.528	-0.994	-1.514	-2.040	-2.501	-2.996	
[H2O2] (M) In[H2O2]	1.000	0.910	0.780	0.590	0.370	0.220	0.130	0.082	0.050	
time (s)	0	120	300	009	1200	1800	2400	3000	3600	


R = 8.35 × 10 4 sec-1

at f = 4000 see, In(HeV) = -3.34SO(HeV) = 0.035 M 32. This is tough because that In [butadiene] us to plot is close to linear. The Kout.] us to plot has a better correlation coefficient (Revalue), but this data set could really benefit from a few more peruts!

time (s) [C4H6] (M) In[C4H6] 1/[C4H6] 195 0.016 -4.135 62.500 604 0.015 -4.200 66.667 1246 0.013 -4.343 76.923 2180 0.011 -4.510 90.909 6210 0.007 -4.991 147.059

 $vate = \frac{1}{2} \frac{d(but)}{dt} = k(but)^{2}$ $vate = \frac{1}{2} \frac{d(b$