Math 130 Solutions - Introduction to Statistics

Homework 4 Solutions

Assignment

Chapter 15: 2, 6, 20, 31, 43
Chapter 16: 9, 20, 24, 28, 47

Hint on 16.47] Think about the mean and standard deviation of a combination of six random variables, one for each day the shop is open.

Chapter 15

15.2] Travel. The given information:

Let $\mathrm{M}=$ event that a U.S. resident has traveled to Mexico
Let $\mathrm{C}=$ event that a U.S. resident has traveled to Canada
$P(\mathrm{M})=0.09$
$P(\mathrm{C})=0.18$
$P(\mathrm{M}$ and C$)=0.04$
A Venn diagram is useful here.

(a) $P(\mathrm{C}$ but not M$)=0.14$. There's a 14% chance that a US resident has traveled to Canada but not Mexico.
(b) $P(\mathrm{C}$ or M$)=P(\mathrm{C})+P(\mathrm{M})-P(\mathrm{C}$ and M$)=0.18+0.09-0.04=0.23$.

Or, add the circular sections of the Venn diagram to get $0.05+0.04+0.14=0.23$. There's a 23% chance that a U.S. resident has traveled to Canada or Mexico.
(c) $\mathrm{P}($ neither C or M$)=1-\mathrm{P}(\mathrm{C}$ or M$)=1-0.23=0.77$

There's a 77% chance that a randomly selected resident has traveled to neither Canada nor Mexico.

15.6] Birth Order.

(a) P (Human Ecology) $=\frac{43}{223}=0.1928$. The probability that a student is in Human Ecology is 0.1928 .
(b) $P($ first-born $)=\frac{113}{223}=0.5067$. The probability that a student is a first born is 0.5067 .
(c) P (first-born and Ecology) $\frac{15}{223}=0.0673$. The probability that a student is a firstborn and Ecology student is 0.0673 .
(d)
$P($ first-born or Ecology $)=P($ first-born $)+P($ Ecology $)-P($ first-born and Ecology $)$

$$
=0.5067+0.1928-0.0673
$$

$$
=0.6322
$$

The probability that a student is a first-born or Ecology student is 0.6322 .
15.20] Benefits. A Venn diagram can help us here.

Let $\mathrm{R}=$ Retirement plan
Let $\mathrm{H}=$ Health Insurance
(a) $\mathrm{P}(\operatorname{not} \mathrm{R}$ and not H$)=0.25$

Using probability rules:

$P(\operatorname{not} \mathrm{R}$ and $\operatorname{not} \mathrm{H})=1-P(\mathrm{R}$ or H$)$

$$
\begin{aligned}
& =1-[P(R)+P(H)+P(\mathrm{R} \text { and } \mathrm{H})] \\
& =1-[0.56+0.68-0.49] \\
& =0.25
\end{aligned}
$$

There is a 25% probability that he has neither a retirement plan nor employer sponsored health insurance.
(b) $P(H \mid R)=\frac{P(H \text { and } \mathrm{R})}{P(R)}=\frac{0.49}{0.56}=0.875$. The probability of health insurance given he has a retirement plan is 0.875 .
(c) No, they are not independent, because

$$
\begin{gathered}
P(H \text { and } R) \stackrel{?}{\stackrel{\sim}{m}} P(H) P(R) \\
\text { ? } \\
0.49=0.68(0.56) \\
0.49 \neq 0.3808
\end{gathered}
$$

(d) They are not mutually exclusive, because there is some overlap between the two events. There are cases with both R and H .
15.31] Montana. Party affiliation is not independent of sex. To see this, let D represent Democrats, and M represent males.
Now $P(D)=\frac{84}{202}=0.4158$ and $P(D \mid M)=\frac{P(D \text { and } M)}{P(M)}=\frac{36}{105}=0.3429$
Since $P(D \mid M) \neq P(D)$, these events are not independent.
15.43] Dishwashers. A tree diagram can help us here.

$$
\begin{aligned}
P(\text { Chuck } \mid \text { Break }) & =\frac{P(\text { Chuck and Break })}{P(\text { Break })} \\
& =\frac{(0.3)(0.01)}{(0.4)(0.01)+(0.3)(0.01)+(0.3)(0.03)} \\
& =\frac{0.009}{0.004+0.003+0.009} \\
& =\frac{0.009}{0.016}=0.5625
\end{aligned}
$$

If we hear a dish break, there's a 56.25\% chance that Chuck is working.

Chapter 16

16.9] Software. The given information is:

Large Contract: $\$ 50,000$ profit
Small Contract: \$20,000 profit 30% chance 60% chance

Both Contracts: $\$ 70,000$ profit $(0.30)(0.60)=18 \%$ chance

Let X be the profit. The distribution of X can be tabulated as

X	50,000	20,000	70,000	0
$P(X)$	0.12	0.42	0.18	0.28

$$
E[X]=\sum_{i=1}^{n} X_{i} P\left(X_{i}\right)=50000(0.12)+20000(0.42)+70000(0.18)+0(0.28)=\$ 27,000
$$

We'd expect an average profit of $\$ 27,000$.
16.20] Insurance. We have the following information:

Costs $\$ 100$
Major Injury: Pays $\$ 10,000$, Probability of $1 / 2000$
Minor Injury: Pays $\$ 3,000$, Probability of $1 / 500$
Let X be the profit.
(a) We can make a table for the probability model.

X	100	$-9,900$	-2900
$P(X)$	0.9975	0.0005	0.002

(b) The company's expected profit is $\$ 89$.

$$
E[X]=\sum_{i=1}^{n} X_{i} P\left(X_{i}\right)=100(0.9975)-9900(0.0005)-2900(0.002)=\$ 89 .
$$

(c) The standard deviation is $\$ 260.54$.

$$
\begin{aligned}
\sigma & =\sqrt{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} P\left(X_{i}\right)} \\
& =\sqrt{(100-89)^{2}(0.9975)+(-9900-89)^{2}(0.0005)+(-2900-89)^{2}(0.002)} \\
& =\sqrt{120.6975+49890.0605+17868.242} \\
& =\sqrt{67879} \\
& =260.536
\end{aligned}
$$

16.24] Contracts. We have the following information:

- We bid on two contracts
- $\quad P($ contract \#1 $)=0.8$
- $P($ contract \#2 $)=0.2$, if you get contract \#1
- $P($ contract \#2) $=0.3$, if you don't get contract \#1
(a) No, the two contracts are not independent. The probability of the second contract changes depending on whether or not we got the first contract. The two events are dependent.
(b) There are several approaches that might work here.

Let $\mathrm{A}=$ the event that we get contract \#1
Let $\mathrm{B}=$ the event that we get contract \#2

We want to find $P(\mathrm{~A}$ and B$)$. We can use the general multiplication rule here.
$P(A$ and $B)=P(A) P(B \mid A)=0.8(0.2)=0.16$
There's a 16% probability that we get both contracts.
We could also try a tree diagram:

Contract \#1 Contract\#2

(c) Let $\mathrm{A}^{\mathrm{C}}=$ the event that we don't get contract \#1

Let $\mathrm{B}^{\mathrm{C}}=$ the event that we don't get contract \#2
We want to find $P\left(\mathrm{~A}^{\mathrm{C}}\right.$ and $\left.\mathrm{B}^{\mathrm{C}}\right)$. We can use the general multiplication rule again.
$P\left(A^{C}\right.$ and $\left.B^{C}\right)=P\left(A^{C}\right) P\left(B^{C} \mid A^{C}\right)=0.2(0.7)=0.14$
There's a 6% probability that we get no contracts.
(d) We can make a table for the probability model.

X	0	1	2
$P(X)$	0.14	0.70	0.16

(e) We have:

$$
\begin{aligned}
& E[X]=\sum_{i=1}^{n} X_{i} P\left(X_{i}\right)=0(0.14)+1(0.70)+2(0.16)=1.02 \\
\sigma & =\sqrt{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} P\left(X_{i}\right)} \\
& =\sqrt{(0-1.02)^{2}(0.14)+(1-1.02)^{2}(0.70)+(2-1.02)^{2}(0.16)} \\
& =\sqrt{0.1457+0.0028+0.1537} \\
& =\sqrt{0.3022} \\
& =0.5497
\end{aligned}
$$

16.28] Random Variables. Find the mean and standard deviation of each of these variables.
(a) $X-20$

Mean $=E[X-20]=E[X]-20=10-20=-10$
$\operatorname{Var}(X-20)=\operatorname{Var}(X)=4 \Rightarrow S D=2$
(b) $0.5 Y$

Mean $=E[0.5 Y]=0.5 E[Y]=0.5(20)=10$
$\operatorname{Var}(0.5 Y)=0.5^{2} \operatorname{Var}(Y)=0.25(25)=6.25 \Rightarrow S D=2.5$
(c) $X+Y$

Mean $=E[X+Y]=E[X]+E[Y]=10+20=30$
$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=4+25=29 \Rightarrow S D=5.39$
(Note: The variances add since X and Y are independent)
(d) $X-Y$

Mean $=E[X-Y]=E[X]-E[Y]=10-20=-10$
$\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=4+25=29 \Rightarrow S D=5.39$
(e) $Y_{1}+Y_{2}$

Mean $=E\left[Y_{1}+Y_{2}\right]=E\left[Y_{1}\right]+E\left[Y_{2}\right]=20+20=40$
$\operatorname{Var}\left(Y_{1}+Y_{2}\right)=\operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}\left(Y_{2}\right)=25+25=50 \Rightarrow S D=7.07$

16.47] Coffee and Doughnuts.

a)

$$
\begin{aligned}
& \mu=E(\text { cups sold in } 6 \text { days })=6(E(\text { cups sold in } 1 \text { day }))=6(320)=1920 \text { cups } \\
& \sigma=S D(\text { cups sold in } 6 \text { days })=\sqrt{6(\operatorname{Var}(\text { cups sold in } 1 \text { day })}=\sqrt{6(20)^{2}} \approx 48.99 \mathrm{cups}
\end{aligned}
$$

The distribution of total coffee sales for 6 days has distribution $N(1920,48.99)$.

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& z=\frac{2000-1920}{48.99} \\
& z=1.633
\end{aligned}
$$

According to the Normal model, the probability that he will sell more than 2000 cups of coffee in a week is approximately 0.051 .
b) Let $C=$ the number of cups of coffee sold. Let $D=$ the number of doughnuts sold.
$\mu=E(50 C+40 D)=0.50(E(C))+0.40(E(D))=0.50(320)+0.40(150)=\$ 220$
$\sigma=S D(0.50 C+0.40 D)=\sqrt{0.50^{2}(\operatorname{Var}(C))+0.40^{2}(\operatorname{Var}(D))}=\sqrt{0.50^{2}\left(20^{2}\right)+0.40^{2}\left(12^{2}\right)} \approx \$ 11.09$
The day's profit can be modeled by $N(220,11.09)$. A day's profit of $\$ 300$ is over 7 standard deviations above the mean. This is extremely unlikely. It would not be reasonable for the shop owner to expect the day's profit to exceed $\$ 300$.
c) Consider the difference $D-0.5 C$. When this difference is greater than zero, the number of doughnuts sold is greater than half the number of cups of coffee sold.

$$
\begin{aligned}
\mu & =E(D-0.5 C)=(E(D))-0.5(E(C))=150+0.5(320)=-\$ 10 \\
\sigma & =S D(D-0.5 C)=\sqrt{(\operatorname{Var}(D))+0.5(\operatorname{Var}(C))}=\sqrt{\left(12^{2}\right)+0.5^{2}\left(20^{2}\right)} \approx \$ 15.62
\end{aligned}
$$

The difference $D-0.5 C$ can be modeled by $N(-10,15.62)$.

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& z=\frac{0-(10)}{15.62} \\
& z=0.640 \\
& -10 \quad 0 \quad 0 \\
& z=0.640
\end{aligned}
$$

According to the Normal model, the probability that the shop owner will sell a doughnut to more than half of the coffee customers is approximately 0.26 .

