Hemoglobin

James Hebda 9/28/11

Another look at binding

•
$$Mb-O_2 \stackrel{k_{off}}{= k_{on}} Mb + O_2$$

- K_d is a result of two rate constants
 - Rate of dissociation, k_{off}
 - Rate of association, k_{on}
- k_{on} is the result of a collision
 - $-k_{on}$ for myoglobin relies on the presence of O_2
- k_{on} = # per mole per second
- k_{off} = # per second

What is K_d?

On and off rates are defined by their rate constants

•
$$k_{on} = \# \text{ mole}^{-1} \text{ sec}^{-1}$$

•
$$k_{off} = \# sec^{-1}$$

•
$$K_a = \frac{k_{on}}{k_{off}} = \frac{\# M^{-1} \sec^{-1}}{\# \sec^{-1}} = M^{-1} = \# per molar?"$$

•
$$K_d = \frac{k_{off}}{k_{on}} = \frac{\# sec^{-1}}{\# M^{-1} sec^{-1}} = M = Useful!$$

Why K_d is very useful

$$Mb-O_2$$
 $Mb_{free} + O_2$

$$K_d = \frac{([Mb_{free}][O_2]}{[Mb-O_2]}$$

$$Mb_{free} = [Mb_T] - [Mb-O_2]$$

We can make a substitution and rearrangement to get something very useful!

Y = fractional saturation

 $Y = [Mb-O_2] / [Mb]_T$

$$Y = [O_2] / (K_d + [O_2])$$

* Now we can use K_d to know the fraction of protein bound at ANY O_2 concentration!

What does a change in K_d look like?

Fractional Binding curves

•
$$K_d = \frac{([Mb_{free}][O_2])}{[Mb-O_2]}$$

- $Mb_{free} = [Mb_T] - [Mb-O_2]$

•
$$Y = \frac{[O_2]}{(K_d + [O_2])}$$

Thinking some more.

- Constant Kd.
 - Increase the amount of Oxygen.
 - What happens?
- At the same oxygen concentration.
 - You measured more Mb-O₂ for Myoglobin A than for mutant Myoglobin B?
 - MyoA Mb-O₂ > MyoB Mb-O₂
 - Does Mb_{free} or Mb_T change? How?
 - MyoA K_d ? MyoB K_d

Now On to Hemoglobin!

Background

Structure

Cooperative binding.

Hemoglobin

- Oxygen carrying protein in your blood.
 - Oxygen picked up in lungs and transported to tissue throughout the body.
 - Oxygen gets transferred to Myoglobin in muscle
- There are 2.3 X 10⁸ hemoglobin molecules in a single red blood cell.
- Hemoglobin looks different and binds oxygen differently than Myoglobin

Hemoglobin is "related" to Myoglobin

But:

- Hemoglobin is a tetrameric protein
- Two different isoforms α and β
- Each subunit has a very similar "fold" to myoglobin
 - Yet only 27% of the residues are identical

Primary Sequence Alignment

```
sp|P68871|HBB HUMAN
                         MVHLTPEEKSAVTALWGKVNV--DEVGGEALGRLLVVYPWTORFFESFGDLSTPDAVMGN
sp|P69905|HBA HUMAN
                         -MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFD-----LSHGS
sp P02144 MYG HUMAN
                         -MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKAS
sp|P68871|HBB HUMAN
                         PKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHH
sp|P69905|HBA HUMAN
                         AOVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAH
sp P02144 MYG HUMAN
                         EDLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSK
sp|P68871|HBB HUMAN
                         FGKEFTPPVQAAYQKVVAGVANALAHKYH-----
sp|P69905|HBA HUMAN
                         LPAEFTPAVHASLDKFLASVSTVLTSKYR-----
sp P02144 MYG HUMAN
                         HPGDFGADAQGAMNKALELFRKDMASNYKELGFQG
                                 .:.: :* : . . :: :*:
```

One dot? Two dots? Star? Colors?

Hemoglobin

Hemoglobin β

Myoglobin

Hemoglobin is a tetramer

 $2\alpha2\beta$ units 4 peptide chains Tetramer Binds four Hemes Binds four O_2

Single unit 1 peptide chains Monomer Binds one Heme Binds one O₂

Hemoglobin Quaternary Structure

Hemoglobin Quaternary Structure

Hemoglobin has allostery

Each state has a different Kd

Modeling cooperative binding

For Myoglobin:

$$Y = \frac{[O_2]}{(K_d + [O_2])}$$

Hyperbolic binding
Simple one phase binding

For Hemoglobin:

$$Y = \frac{[O_2]^n}{(K_d^n + [O_2]^n)}$$

Sigmoidal binding
Where **n** is extent of cooperativity

More binding this afternoon

- In lab we will be looking at two things that bind Hemoglobin and Myoglobin
 - Oxygen
 - Carbon Monoxide