
Math 28 Spring 2008: Exam 2

Instructions: Each problem is scored out of 10 points for a total of 40 points. You may not use any
outside materials(eg. notes or books). You have 50 minutes to complete this exam.

Problem 1.

(a) Let f : A → R where A ⊂ R. State the definition for f to be uniformly continuous on A.

(b) Which of the following functions are uniformly continuous on [0,∞)?

(i) f(x) = sin(x2)

(ii) f(x) = 1
x+1

Proof.

(a) A function f : A → R is uniformly continuous on A if for every ε > 0 there exists a δ > 0 such
that for every x, y ∈ A, |x− y| < δ implies that |f(x)− f(y)| < ε.

(b) (i) No. Let the sequence of points (xn) be defined by xn = 2nπ and the sequence of points (yn)
be defined by yn = 2nπ. Then we have

|f(xn)− f(yn)| =
∣∣∣∣f(
√

2nπ)− f(
√

2nπ +
π

2
)
∣∣∣∣ = |sin(2nπ)− sin(2nπ + π/2)| = 1.

Also notice that |xn − yn| → 0 as n →∞. So for any ε ≤ 1 and for any δ > 0 there exists an
N ∈ N such that |xn − yn| < δ, but we have that |f(xN )− f(yN )| = 1 ≥ ε.

(ii) Yes. Let ε < 0 and let δ = ε Then for x, y ∈ A with |x− y| < δ we have
∣∣∣∣

1
1 + x

− 1
y + 1

∣∣∣∣ =
∣∣∣∣

y − x

(1 + x)(1 + y)

∣∣∣∣

≤ |x− y|
1

= δ = ε.

where the inequality comes from the fact that x, y ∈ [0,∞) and so 1
1+x , 1

1+y ≥ 1.

Problem 2. Let C be the Cantor set on [0, 1] obtained in the standard way by successively removing
the middle third of each interval. Define g : [0, 1] → R by

g(x) =

{
1 x ∈ C

0 x 6∈ C.

(a) Show that g is discontinuous at every point in C.

(b) Show that g is continuous at every point not in C.

Proof. We will use the topological criterion for continuity.
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(a) Let c ∈ C and let ε = 1
2 . Then for every δ > 0, the neighborhood Vδ(c) in not a subset of C (since

we proved in class that C contains no intervals). Thus there exists a point x ∈ Vδ(c) with x 6∈ C
and hence g(x) = 0 6∈ Vε(g(c)).

(b) Let c 6∈ C and let ε > 0. Since C we proved in class that is closed, its complement is open. Hence,
there exists a δ > 0 such that Vδ(c) ⊆ Cc. Take any x ∈ Vδ(c), then x ∈ Cc and hence g(x) = 0.
Hence we have x ∈ Vδ(c) implies g(x) ∈ Vε(g(c)) and g is continuous at c.

Problem 3.

(a) State the Generalized Mean Value Theorem.

(b) Let f : R → R be a differentiable function and suppose that f ′ is bounded. Show that f is
uniformly continuous.

Proof.

(a) If f and g are continuous on the closed interval [a, b] and differentiable on the open interval (a, b),
then there exists a point c ∈ (a, b) where

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c).

If g′(x) is never 0 on (a, b), then the conclusion can be stated as

f ′(c)
g′(c)

=
f(b)− f(a)
g(b)− g(a)

.

(b) We are given that f ′(x) is bounded. So let M > 0 be a bound for f ′(x). Let ε > 0 and let δ = ε
M .

Consider x > y ∈ R such that |x− y| < δ. Then we have by the Mean Value Theorem that there
exists a c ∈ (x, y) such that

f(y)− f(x)
y − x

= f ′(c)

and hence
|f(y)− f(x)|
|y − x| = M

so we have
|f(y)− f(x)| = M |y − x| < M

ε

M
= ε.

Problem 4.

(a) State the definition for a function f : A → R to be differentiable on an interval A.
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(b) Let f : [−1, 1] → R be the function defined by

f(x) =

{
x2 sin 1

x2 x 6= 0
0 x = 0.

Show that f is differentiable, but that its derivative is unbounded.

Proof.

(a) Let f : A → R be a function defined on an interval A. Given c ∈ A, the derivative of f at c is
defined by

f ′(c) = lim
x→c

f(x)− f(c)
x− c

provided the limit exists. If f ′(c) exists for all be points c in A, then we say that f is differentiable
on A

(b) To show differentiable, we first note that x2 and sin x are continuous differentiable functions and
hence their product is differentiable. Since sin 1

x2 is defined everywhere but x = 0, we can use the
standard differentiation rules for x 6= 0 and only need to consider the limit definition for the case
x = 0. Consider

lim
x→0

f(x)− 0
x

= lim
x→0

x sin
1
x2

.

This is bounded by

−x ≤ x sin
1
x2

≤ x

so by the Squeeze Theorem the limit approaches 0. Hence f ′(0) also exists.

The derivative is given by

f ′(x) =

{
2x sin 1

x2 − 2
x cos 1

x2 x 6= 0
0 x = 0.

where the case x 6= 0 is from standard differentiation rules (product rule and chain rule).

To see that the derivative is unbounded, consider the sequence xn = 1√
(2n+1)π

with (xn) → 0 and

lim
n→∞

− 1
x

cos
1
x2

= lim
n→ infty

− 1√
(2n + 1)

(−1) = lim
n→∞

1√
(2n + 1)

= ∞.

Hence we have values of f ′(x) which can be arbitrarily large as x → 0.
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