Math 28 Spring 2008: Exam 2

Instructions: Each problem is scored out of 10 points for a total of 40 points. You may not use any
outside materials(eg. notes or books). You have 50 minutes to complete this exam.

Problem 1.
(a) Let f: A— R where A C R. State the definition for f to be uniformly continuous on A.

(b) Which of the following functions are uniformly continuous on [0, 00)?

(i) f(z) = sin(a?)

Proof.

(a) A function f : A — R is uniformly continuous on A if for every € > 0 there exists a § > 0 such
that for every z,y € A, |x — y| < § implies that |f(z) — f(y)| < e.

(b) (i) No. Let the sequence of points (z,,) be defined by x,, = 2n7 and the sequence of points (y,,)
be defined by ¥, = 2nw. Then we have

o) = Flon)] = | 1(VER) = 10y 207 + )| = sin2nr) —sin(2nm + 7/2)| =1

Also notice that |2, — yn| — 0 as n — oo. So for any € < 1 and for any § > 0 there exists an
N € N such that |z, — y,| < 8, but we have that |f(zy) — f(yn)| =1 > €.

(ii) Yes. Let € < 0 and let 6 = € Then for z,y € A with |z — y| < § we have
NN ]
I+z y+1| |[(14+2)(1+y)

S@zéze.

I >1.

where the inequality comes from the fact that =,y € [0,00) and so H%, Ty 2

O

Problem 2. Let C be the Cantor set on [0, 1] obtained in the standard way by successively removing
the middle third of each interval. Define ¢ : [0,1] — R by

1 ze€C
g(x)_{o réC.

(a) Show that g is discontinuous at every point in C.
(b) Show that g is continuous at every point not in C.

Proof. We will use the topological criterion for continuity.



(a) Let c € C and let e = . Then for every § > 0, the neighborhood V;(c) in not a subset of C' (since
we proved in class that C' contains no intervals). Thus there exists a point « € Vs(c) with z ¢ C
and hence g(z) =0 ¢ V.(g(c)).

(b) Let ¢ ¢ C and let € > 0. Since C' we proved in class that is closed, its complement is open. Hence,
there exists a 0 > 0 such that Vs(c) C C°. Take any x € Vj(c), then € C¢ and hence g(z) = 0.
Hence we have = € Vs(c) implies g(z) € Ve(g(c)) and g is continuous at c.

O
Problem 3.
(a) State the Generalized Mean Value Theorem.

(b) Let f : R — R be a differentiable function and suppose that f’ is bounded. Show that f is
uniformly continuous.

Proof.

(a) If f and g are continuous on the closed interval [a, b] and differentiable on the open interval (a,b),
then there exists a point ¢ € (a, b) where

(f(0) = f(a))g'(c) = (9(b) — g(a)) f'(c).

If ¢’(x) is never 0 on (a,b), then the conclusion can be stated as

(b) We are given that f’(z) is bounded. So let M > 0 be a bound for f'(x). Let e > 0 and let § = 47.

Consider = > y € R such that |z — y| < . Then we have by the Mean Value Theorem that there
exists a ¢ € (x,y) such that

f(y) - f(l') _ f’(c)
Yy—x
and hence
[f) — @l _
ly — |
so we have .
[fy) = f@)] =My —a| <M; =e
O
Problem 4.

(a) State the definition for a function f: A — R to be differentiable on an interval A.



(b)

Let f:[—1,1] — R be the function defined by

2 g 1
{x sinzz z#0

@)= 0 z=0.

Show that f is differentiable, but that its derivative is unbounded.

Proof.

(a)

Let f : A — R be a function defined on an interval A. Given ¢ € A, the derivative of f at c is

defined by

T—C xr —cC

provided the limit exists. If f’(c¢) exists for all be points ¢ in A, then we say that f is differentiable
on A

To show differentiable, we first note that 22 and sinz are continuous differentiable functions and

hence their product is differentiable. Since sin % is defined everywhere but z = 0, we can use the

standard differentiation rules for x # 0 and only need to consider the limit definition for the case
x = 0. Consider
f(z) -0
x

lim

. .1
= lim zsin —.
x—0 x—0

22
This is bounded by

1
—xﬁxsm—anz
T

so by the Squeeze Theorem the limit approaches 0. Hence f(0) also exists.

The derivative is given by

, B 2xsinz%—%cosml—2 x#0
fi@) =
0 z=0.

where the case z # 0 is from standard differentiation rules (product rule and chain rule).

To see that the derivative is unbounded, consider the sequence x,, = m with (2,) — 0 and
1 1 1
lim —=cos— = lim ————(~1)= lim ——— = o0
n—oo I T n— infty (2n+1) n—oo \ /(2n + 1)

Hence we have values of f’(x) which can be arbitrarily large as = — 0.



