Same as before - lots of practice problems on the first two pages, the last two pages have the ones you need to turn in for credit on Wed 9/30.

End-of-chapter problems from Hornback: Ch16: 15, 16 (this problem shows a reasonable use of the bracket notation for the dianion, but we could instead draw several resonance structures or a representation of the delocalized structure with partial π-bonding and the double negative distributed around the ring), 17-22 (best to count around the perimeter here), 27 (note that the resonance stabilization you calculate in this case will be relative to an isolated double bond reference), 29 (disregard the SG answer - you can count electrons in the individual cycles, but a more general approach is to count electrons around the perimeter), 30 (same comment), 31 .

1. Determine whether each compound below is aromatic, antiaromatic, or non-aromatic. To do this (a) determine whether a conjugated cycle of p-orbitals is present, (b) count π-electrons delocalized around the cycle, (c) apply the appropriate label, and (d) go back and make sure you didn't skip step a! Assume each conjugated π-system is planar.

2. For each compound below, state the number of π-electrons in the conjugated cycle, if any, and state whether the compound is aromatic, antiaromatic, or non-aromatic. Show how the $\pi-$ electrons are delocalized by drawing all the important resonance structures for each.
(a)

(b)
(c)
(d)

3. The structures and enthalpies of hydrogenation of three tricyclic alkenes are given below. All three produce the same tricyclic alkane.

$\Delta \mathbf{H}^{\circ}{ }_{\text {hydrog }}=$

- 55.0

- $78.0 \mathrm{kcal} / \mathrm{mol}$

Although the π-bonds of the diene and triene are not conjugated in the classical sense, their geometries allow the possibility of a weak interaction between the π-bonds. These π-bonds are said to be homoconjugated. The geometry is shown more clearly for triquinacene (the third compound) at right. (A model will provide a more realistic structure.)

(a) Based on the enthalpies of hydrogenation, calculate the stabilization or destabilization associated with the two homoconjugated π-bonds in the second structure, if any.
(b) Calculate the stabilization or destabilization associated with the three homoconjugated π bonds in the third structure, if any. If this compound is more stable than expected, it would be called homoaromatic; if less stable, it would be homoantiaromatic. But beware: don't just count electrons, make a decision, and then force your calculation to support you preconception. Some of these systems can give you unexpected results. What do the numbers tell you?
(c) Draw a diagram showing the relevant actual and calculated enthalpy changes.
$\square \square \square \square$

Chem 21
Fall 2009
Name \qquad
HW set 3
25 points; due Wed, Sept 30

1. Same instructions as for problem 1 on the non-graded part.

2. Same instructions as for problem 2 on the non-graded part.
(a)

(b)

3. The enthalpies of hydrogenation of "norbornene" (bicyclo[2.2.1]hept-2-ene, 2nd structure below) and "norbornadiene" (bicyclo[2.2.1]hepta-2,5-diene, 3rd structure below) are given below. The hydrogenation product is "norbornane" (bicyclo[2.2.1]heptane, 1st structure below).

$\Delta \mathbf{H}_{\text {hydrog }}^{\circ}=$

-29.0

- $60.0 \mathrm{kcal} / \mathrm{mol}$
(a) Make a model of the diene (3rd), then redraw the structure in the space below to show how the p-orbitals that make up the π-bonds are oriented in space.
(b) Does your diagram show a possible interaction between the π-bonds? If so, where?
(c) Of course, we can't tell from such a drawing whether that interaction is significant or not. That's where thermochemistry comes in. Use the enthalpies of hydrogenation to calculate the stabilization or destabilization associated with those two homoconjugated π-bonds in the third structure, if any.
(d) Draw a diagram showing the relevant actual and calculated enthalpy changes.

