
Introduction to Analysis
Constructing R from Q

Definition. A subset A ⊂ Q is called a cut if it posses the following three properties

1. A 6= ∅ and A 6= Q.

2. If r ∈ A, then also A contains every rational q < r.

3. A does not have a maximum, that is, if r ∈ A, then there exists an s ∈ A with r < s.

Remark. Note that for a cut A, if r ∈ A and s 6∈ A, then r < s. This is because all rational q < r are in
A. Hence, a rational number s 6∈ A must satisfy r < s.

Example.

1. Cr = {t ∈ Q | t < r}
2. {t ∈ Q | t <

√
2} = {t ∈ Q | t ≤ √

2

3. Not a cut {t ∈ Q | t ≤ 2}.
Definition. The real numbers, denoted R, is the set of all cuts in Q.

1 Ordering on Cuts

Theorem. (Ordering on R) Inclusion of sets (⊆) is an ordering on cuts.

Proof. We need to prove the three properties of an ordering:

1. For arbitrary cuts A,B ∈ R at least one of A ⊆ B or B ⊆ A is true.

Proof. If A ⊆ B then we are done, so assume not. We need to show that B ⊆ A. By assumption,
there exists an element a ∈ A such that a 6∈ B. Let b ∈ B be arbitrary. Since a 6∈ B the lemma
implies that b < a and by definition of a cut we must have b ∈ A.

2. If A ⊆ B and B ⊆ A then A = B.

Proof. This is standard definition of equality of sets.

3. (transitive) If A ⊆ B and B ⊆ C then A ⊆ C.

Proof. Again, trivial since we are working with sets.
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2 Addition on Cuts

Theorem. (Addition in R) Given A,B,C ∈ R we define

1. A + B = {a + b | a ∈ A, b ∈ B} such that A + B = B + A and (A + B) + C = A + (B + C).

2. O = {t ∈ Q | t < 0} such that A + O = A.

3. −A = {r ∈ Q | there exists t 6∈ A with t < −r} such that A + (−A) = O

4. If A ⊆ C then A + B ⊆ A + C

Proof. Let A,B be two cuts.

1. (Addition) We first need to see that A + B is a cut, then we need to check that addition satisfies:
commutativity, associativity, identities exist, and inverses exist.

(a) (A + B is a cut):

i. First we see that A + B is non-empty since A,B are non-empty. To see that A + B 6= Q
we find an upper bound for A + B. Let l1 6∈ A and l2 6∈ B. For any a ∈ A and b ∈ B we
have that a < l1 and b < l2. Hence we have l1 + l2 as an upper bound of A + B.

ii. Let r = a + b ∈ A + B. Let s ∈ Q such that s < r. Then we have s < a + b and hence
s− b < a. Hence s− b ∈ A. So we have s = (s− b) + b ∈ A + B.

iii. To see that A + B does not have a maximum, fix c ∈ A + B and write c = a + b for some
a ∈ A and b ∈ B. So there exists and s ∈ A with a < s and an r ∈ B with b < r. So we
have c = a + b < s + r.

(b) (Commutative): We simply write

A + B = {a + b | a ∈ A, b ∈ B}
= {b + a | a ∈ A, b ∈ B}
= B + A.

(c) (Associative): Let C be a third cut. Then we simply write

(A + B) + C = {(a + b) + c | a ∈ A, b ∈ B, c ∈ C}
= {a + (b + c) | a ∈ A, b ∈ B, c ∈ C}
= A + (B + C).

2. (Identity): Let O = {p ∈ Q | p < 0}.
(a) O is clearly a cut.

(b) We need to show that A + O ⊆ A and A ⊆ A + O.
Let a + b ∈ A + O. Then we have a + b < a ∈ A. Similarly, let a ∈ A. Then for some ε > 0,
s + ε ∈ A. Then (s + ε)− (−ε) ∈ A + B.

3. (Additive Inverse): Let −A = {r ∈ Q | ∃t 6∈ A with t < −r}.
(a) (−A is a cut): Note that for A = {r ∈ Q | r < 1/2 we have that −A = {r ∈ Q | r < −1/2}.
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i. Since A 6= Q there exists a t 6∈ A. Since t < t + 1 we can conclude that −(t + 1) ∈ −A by
the definition of −A, so we have −A is non-empty.

ii. To show −A 6= Q we know that A is non-empty so there exists an a ∈ A. If r ∈ −A,
there exists a t 6∈ A with t < −r. Then t 6∈ A implies that a < t and hence r < −a. So
−A is bounded above by −a.

iii. Let r ∈ −A and consider s ∈ Q with s < r. We need s ∈ −A. Because r ∈ −A there
exists a t 6∈ A with t < −r. Since s < r implies −r < −s we have t < −s and hence
s ∈ −A.

iv. Let r ∈ −A, then there exists a t 6∈ A with t < −r. By the density of Q we can choose
an s ∈ Q such that t < s < −r. Hence −s ∈ −A and because r < −s, we see that −A
does not possess a maximum.

(b) (A + −A = O): Let r ∈ −A. Because −r ∈ −A we know there exists a t 6∈ A with t < −r.
Since t 6∈ A we have a < t for all a ∈ A, and hence a < −r. Thus, a + r < 0 and so a + r ∈ O
as needed to show that A + (−A) ⊆ O.
To show the reverse inclusion let o ∈ O and we need to find an a ∈ A and a b ∈ −A such that
a + b = o. Let ε = |o|

2 = −o
2 . Now choose t ∈ Q such that t 6∈ A and t− ε ∈ A. t 6∈ A implies

that −(t + ε) ∈ −A. So we have

−(t + ε) + (t− ε) = −2ε = o.

4. (Respects ordering): Assume that A ⊆ B. Then consider r = a + c ∈ A + C. Then we have
r ∈ B + C since a ∈ B by assumption.

3 Multiplication in R
Theorem. (Multiplication in R) Let A,B ≥ O be in R.

1. For A,B ⊇ O, AB = {ab | a ∈ A, b ∈ B with a, b ≥ 0} ∪ {q ∈ Q, q < 0}
2. I = {t ∈ Q | t < 1} such that AI = A.

3. For A 6= O, A−1 = {t ∈ Q | 1
t 6∈ A, ∃r 6∈ As.t.r < 1

t } ∪ {t ∈ Q | t ≤ 0} such that AA−1 + I.

4. C(A + B) = CA + CB.

5. AC ⊇ O.

Remark. For negative multiplication and inverse, we take −A.

Proof.

1. (AB is a cut)

(a) AB is not empty because all rational numbers t < 0 are in AB. Let s, t be upper bounds for
A and B respectively. Then AB is bounded above by st, so AB cannot be all of Q.
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(b) Let t ∈ AB be arbitrary and let s ∈ Q satisfy s < t. If s < 0 the s ∈ AB by the definition of
our product, so let 0 ≤ s < t. So we have t = ab with a ∈ A and b ∈ B and a, b > 0. Because
s < ab we have s

b < a and hence s
b ∈ A. Then

s =
(s

b

)
(b) ∈ AB.

(c) Let t ∈ AB. If t < 0 then t < t/2 and t/2 ∈ AB since t/2 < 0 as well. If t ≥ 0, then t = ab
for some a ∈ A and b ∈ B. Applying the 3rd property of cuts to A,B yields s ∈ A and r ∈ B
such that a < s and b < r. So we have sr ∈ AB and ab < sr.

2. (Multiplicative Identity):

(a) We first show that I is a cut

i. This is easy since 0 ∈ I and 2 6∈ I.
ii. Assume that t ∈ I, then for s < t we have s < 1 and hence s ∈ I.
iii. Let t ∈ I. If t < 0, then t < t/2 ∈ I. if t ≥ 0 then t < t+1

2 ∈ I.

(b) (AI ⊆ A): Let q ∈ AI. Because I ⊇ O, then either q < 0 or q = ab with a, b ≥ 0 and a ∈ A
and b < 1. If q < 0, then q ∈ A since A ≥ O. In the other case, q = ab < a and hence ab ∈ A.

(c) (A ⊆ AI): Let a ∈ A. If a < 0 then a ∈ AI by the product of cuts. If a ≥ 0, then we can
pick a t ∈ A with a < t. Hence a

t < 1 and hence a
t ∈ I. So we have

a = (t)
(a

t

)
∈ AI.

3. (Multiplicative Inverse)

(a) A−1 is a cut.

i. First, −1 ∈ A−1 so it is not empty. So we need to show it is not all of Q. Let 0 ≤ t 6= 0 ∈ A
(this is possible, since A 6= O and A ⊇ O). Then 1

t 6∈ A−1.
ii. Let t ∈ A−1. Assume that s < t. Then we have 1

t < 1
s and that 1

t 6∈ A so we must have
1
s 6∈ A and hence 1

s ∈ A−1.
iii. Let t ∈ A−1. If t < 0, let s = t

2 . So assume t ≥ 0. Then 1
t 6∈ A and there exists and

r 6∈ A such that r < 1
t . Since Q is dense, there exists a rational number r < s < 1

t that
is also not in A (If t = 0 choose any s > r.). Then we have that 1

s 6∈ A and that r < s,
so we have 1

s ∈ A−1 and t < 1
s .

(b) AA−1 ⊆ I Let t ∈ AA−1 with t ≤ 0, then t ∈ I. Let a ∈ A and b ∈ A−1 with a, b > 0. (Note
that a = b = 1 is a contradiction, since that would imply that 1

b ∈ A, so we must have one of
less than 1.) Since 1

b 6∈ A we have a < 1
b and hence

ab <

(
1
b

)
b = 1

Hence ab ∈ I.
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(c) I ⊆ AA−1 If A = I then A−1 = I so there is nothing to show, so assume not.
WLOG assume that A ⊆ I ⊆ A−1. Let r ∈ I. If r ≤ 0, then r ∈ AA−1. Now assume that we
have 0 < r < 1. There exits an n ∈ N such that rn ∈ A and rn−1 6∈ A. If 1

rn−1 ∈ A−1 we have

r = rn

(
1

rn−1

)

and are done. So assume that 1
rn−1 6∈ A−1. This means that for every ε > 0 we have

rn−1 − ε ∈ A. So we can find a rational ε > 0 such that

rn < r(rn−1 + ε) < rn−1

by the density of the rational numbers. So we have 1
rn−1+ε ∈ A−1 since (rn−1 + ε) 6∈ A and

rn−1 < rn−1 + ε. But also note that r(rn−1 + ε) ∈ A.

r = r(rn−1 + ε)
1

rn−1 + ε
∈ AA−1

4. (Distributive Property): We show inclusion in both ways.

(a) If t ∈ C(A + B) then we can write t = c(a + b). Since these are all rational numbers we have
t = ca + cb ∈ CA + CB.

(b) If t ∈ CA + CB then we can write t = ca + cb. Since these are all rational number we have
t = c(a + b) ∈ C(A + B).

5. (Respects ordering): By the definition of AB this is trivial.

Remark. You will show for homework the embedding Q ⊆ R:
Let Cr = {t ∈ Q | t < r}. Then we have

1. Cr + Cs = Cr+s

2. CrCs = Crs.

3. etc.

For r ∈ Q this provides Q and a subfield of R (as cuts).

4 Least Upper Bounds

Definition. A set A ⊆ R is bounded above if there exists a B ∈ R such that A ≤ B for all A ∈ A. B is
called an upper bound for A. S ∈ R is a least upper bound for A if it satisfies

1. S is an upper bound for A.

2. If B is any upper bound for A, then S ≤ B.

Theorem. Let S = ∪A∈AA. S is the least upper bound for A.
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Proof.

1. First we show that S is a cut.

(a) Since A 6= ∅, then S 6= ∅. Since A is bounded above by some cut B we have S ≤ B. Since
B 6= Q we have S 6= Q.

(b) Let a ∈ S and r ∈ Q with r < a. Since a ∈ S, then a ∈ A for some A ∈ S. Hence we have
r ∈ A and hence r ∈ S.

(c) Let a ∈ S, then a ∈ A for some A ∈ S. Therefore, there is an r ∈ A such that a < r and
since r ∈ A, then r ∈ S.

2. Now we need to show that it is in fact a least upper bound.

(a) S is an upper bound for A since A ≤ S for all A ∈ A.

(b) Let B be an arbitrary upper bound for A. We need S ≤ B. Let s ∈ S. There fore s ∈ A for
some A ∈ A and hence s ∈ B. Therefor S ≤ B.

Since least upper bounds exists and R is complete. R is also an ordered field containing Q.

Remark. Cantor used equivalence classes of Cauchy sequences to define R. (two Cauchy sequences are
equivalent if (xn − yn) → 0.

Remark. Cuts may seem a weird concept compared to a decimal number, but with decimals how do you
resolve the fact that .5 = .499.
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