Introduction to Analysis
 Constructing \mathbb{R} from \mathbb{Q}

Definition. A subset $A \subset \mathbb{Q}$ is called a cut if it posses the following three properties

1. $A \neq \emptyset$ and $A \neq \mathbb{Q}$.
2. If $r \in A$, then also A contains every rational $q<r$.
3. A does not have a maximum, that is, if $r \in A$, then there exists an $s \in A$ with $r<s$.

Remark. Note that for a cut A, if $r \in A$ and $s \notin A$, then $r<s$. This is because all rational $q<r$ are in A. Hence, a rational number $s \notin A$ must satisfy $r<s$.

Example.

1. $C_{r}=\{t \in \mathbb{Q} \mid t<r\}$
2. $\{t \in \mathbb{Q} \mid t<\sqrt{2}\}=\{t \in \mathbb{Q} \mid t \leq \sqrt{2}$
3. Not a cut $\{t \in \mathbb{Q} \mid t \leq 2\}$.

Definition. The real numbers, denoted \mathbb{R}, is the set of all cuts in \mathbb{Q}.

1 Ordering on Cuts

Theorem. (Ordering on \mathbb{R}) Inclusion of sets (\subseteq) is an ordering on cuts.
Proof. We need to prove the three properties of an ordering:

1. For arbitrary cuts $A, B \in \mathbb{R}$ at least one of $A \subseteq B$ or $B \subseteq A$ is true.

Proof. If $A \subseteq B$ then we are done, so assume not. We need to show that $B \subseteq A$. By assumption, there exists an element $a \in A$ such that $a \notin B$. Let $b \in B$ be arbitrary. Since $a \notin B$ the lemma implies that $b<a$ and by definition of a cut we must have $b \in A$.
2. If $A \subseteq B$ and $B \subseteq A$ then $A=B$.

Proof. This is standard definition of equality of sets.
3. (transitive) If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Proof. Again, trivial since we are working with sets.

2 Addition on Cuts

Theorem. (Addition in \mathbb{R}) Given $A, B, C \in \mathbb{R}$ we define

1. $A+B=\{a+b \mid a \in A, b \in B\}$ such that $A+B=B+A$ and $(A+B)+C=A+(B+C)$.
2. $O=\{t \in \mathbb{Q} \mid t<0\}$ such that $A+O=A$.
3. $-A=\{r \in \mathbb{Q} \mid$ there exists $t \notin A$ with $t<-r\}$ such that $A+(-A)=O$
4. If $A \subseteq C$ then $A+B \subseteq A+C$

Proof. Let A, B be two cuts.

1. (Addition) We first need to see that $A+B$ is a cut, then we need to check that addition satisfies: commutativity, associativity, identities exist, and inverses exist.
(a) $(A+B$ is a cut $)$:
i. First we see that $A+B$ is non-empty since A, B are non-empty. To see that $A+B \neq \mathbb{Q}$ we find an upper bound for $A+B$. Let $l_{1} \notin A$ and $l_{2} \notin B$. For any $a \in A$ and $b \in B$ we have that $a<l_{1}$ and $b<l_{2}$. Hence we have $l_{1}+l_{2}$ as an upper bound of $A+B$.
ii. Let $r=a+b \in A+B$. Let $s \in \mathbb{Q}$ such that $s<r$. Then we have $s<a+b$ and hence $s-b<a$. Hence $s-b \in A$. So we have $s=(s-b)+b \in A+B$.
iii. To see that $A+B$ does not have a maximum, fix $c \in A+B$ and write $c=a+b$ for some $a \in A$ and $b \in B$. So there exists and $s \in A$ with $a<s$ and an $r \in B$ with $b<r$. So we have $c=a+b<s+r$.
(b) (Commutative): We simply write

$$
\begin{aligned}
A+B & =\{a+b \mid a \in A, b \in B\} \\
& =\{b+a \mid a \in A, b \in B\} \\
& =B+A
\end{aligned}
$$

(c) (Associative): Let C be a third cut. Then we simply write

$$
\begin{aligned}
(A+B)+C & =\{(a+b)+c \mid a \in A, b \in B, c \in C\} \\
& =\{a+(b+c) \mid a \in A, b \in B, c \in C\} \\
& =A+(B+C)
\end{aligned}
$$

2. (Identity): Let $O=\{p \in \mathbb{Q} \mid p<0\}$.
(a) O is clearly a cut.
(b) We need to show that $A+O \subseteq A$ and $A \subseteq A+O$.

Let $a+b \in A+O$. Then we have $a+b<a \in A$. Similarly, let $a \in A$. Then for some $\epsilon>0$, $s+\epsilon \in A$. Then $(s+\epsilon)-(-\epsilon) \in A+B$.
3. (Additive Inverse): Let $-A=\{r \in \mathbb{Q} \mid \exists t \notin A$ with $t<-r\}$.
(a) $(-A$ is a cut): Note that for $A=\{r \in \mathbb{Q} \mid r<1 / 2$ we have that $-A=\{r \in \mathbb{Q} \mid r<-1 / 2\}$.
i. Since $A \neq \mathbb{Q}$ there exists a $t \notin A$. Since $t<t+1$ we can conclude that $-(t+1) \in-A$ by the definition of $-A$, so we have $-A$ is non-empty.
ii. To show $-A \neq \mathbb{Q}$ we know that A is non-empty so there exists an $a \in A$. If $r \in-A$, there exists a $t \notin A$ with $t<-r$. Then $t \notin A$ implies that $a<t$ and hence $r<-a$. So $-A$ is bounded above by $-a$.
iii. Let $r \in-A$ and consider $s \in \mathbb{Q}$ with $s<r$. We need $s \in-A$. Because $r \in-A$ there exists a $t \notin A$ with $t<-r$. Since $s<r$ implies $-r<-s$ we have $t<-s$ and hence $s \in-A$.
iv. Let $r \in-A$, then there exists a $t \notin A$ with $t<-r$. By the density of \mathbb{Q} we can choose an $s \in \mathbb{Q}$ such that $t<s<-r$. Hence $-s \in-A$ and because $r<-s$, we see that $-A$ does not possess a maximum.
(b) $(A+-A=O)$: Let $r \in-A$. Because $-r \in-A$ we know there exists a $t \notin A$ with $t<-r$. Since $t \notin A$ we have $a<t$ for all $a \in A$, and hence $a<-r$. Thus, $a+r<0$ and so $a+r \in O$ as needed to show that $A+(-A) \subseteq O$.
To show the reverse inclusion let $o \in O$ and we need to find an $a \in A$ and a $b \in-A$ such that $a+b=o$. Let $\epsilon=\frac{|o|}{2}=\frac{-o}{2}$. Now choose $t \in \mathbb{Q}$ such that $t \notin A$ and $t-\epsilon \in A . t \notin A$ implies that $-(t+\epsilon) \in-A$. So we have

$$
-(t+\epsilon)+(t-\epsilon)=-2 \epsilon=o
$$

4. (Respects ordering): Assume that $A \subseteq B$. Then consider $r=a+c \in A+C$. Then we have $r \in B+C$ since $a \in B$ by assumption.

3 Multiplication in \mathbb{R}

Theorem. (Multiplication in $\mathbb{R})$ Let $A, B \geq O$ be in \mathbb{R}.

1. For $A, B \supseteq O, A B=\{a b \mid a \in A, b \in B$ with $a, b \geq 0\} \cup\{q \in \mathbb{Q}, q<0\}$
2. $I=\{t \in \mathbb{Q} \mid t<1\}$ such that $A I=A$.
3. For $A \neq O, A^{-1}=\left\{t \in \mathbb{Q} \left\lvert\, \frac{1}{t} \notin A\right., \exists r \notin A\right.$ s.t. $\left.<\frac{1}{t}\right\} \cup\{t \in \mathbb{Q} \mid t \leq 0\}$ such that $A A^{-1}+I$.
4. $C(A+B)=C A+C B$.
5. $A C \supseteq O$.

Remark. For negative multiplication and inverse, we take $-A$.
Proof.

1. $(A B$ is a cut $)$
(a) $A B$ is not empty because all rational numbers $t<0$ are in $A B$. Let s, t be upper bounds for A and B respectively. Then $A B$ is bounded above by $s t$, so $A B$ cannot be all of \mathbb{Q}.
(b) Let $t \in A B$ be arbitrary and let $s \in \mathbb{Q}$ satisfy $s<t$. If $s<0$ the $s \in A B$ by the definition of our product, so let $0 \leq s<t$. So we have $t=a b$ with $a \in A$ and $b \in B$ and $a, b>0$. Because $s<a b$ we have $\frac{s}{b}<a$ and hence $\frac{s}{b} \in A$. Then

$$
s=\left(\frac{s}{b}\right)(b) \in A B
$$

(c) Let $t \in A B$. If $t<0$ then $t<t / 2$ and $t / 2 \in A B$ since $t / 2<0$ as well. If $t \geq 0$, then $t=a b$ for some $a \in A$ and $b \in B$. Applying the 3rd property of cuts to A, B yields $s \in A$ and $r \in B$ such that $a<s$ and $b<r$. So we have $s r \in A B$ and $a b<s r$.
2. (Multiplicative Identity):
(a) We first show that I is a cut
i. This is easy since $0 \in I$ and $2 \notin I$.
ii. Assume that $t \in I$, then for $s<t$ we have $s<1$ and hence $s \in I$.
iii. Let $t \in I$. If $t<0$, then $t<t / 2 \in I$. if $t \geq 0$ then $t<\frac{t+1}{2} \in I$.
(b) $(A I \subseteq A)$: Let $q \in A I$. Because $I \supseteq O$, then either $q<0$ or $q=a b$ with $a, b \geq 0$ and $a \in A$ and $b<1$. If $q<0$, then $q \in A$ since $A \geq O$. In the other case, $q=a b<a$ and hence $a b \in A$.
(c) $(A \subseteq A I)$: Let $a \in A$. If $a<0$ then $a \in A I$ by the product of cuts. If $a \geq 0$, then we can pick a $t \in A$ with $a<t$. Hence $\frac{a}{t}<1$ and hence $\frac{a}{t} \in I$. So we have

$$
a=(t)\left(\frac{a}{t}\right) \in A I .
$$

3. (Multiplicative Inverse)
(a) A^{-1} is a cut.
i. First, $-1 \in A^{-1}$ so it is not empty. So we need to show it is not all of \mathbb{Q}. Let $0 \leq t \neq 0 \in A$ (this is possible, since $A \neq O$ and $A \supseteq O$). Then $\frac{1}{t} \notin A^{-1}$.
ii. Let $t \in A^{-1}$. Assume that $s<t$. Then we have $\frac{1}{t}<\frac{1}{s}$ and that $\frac{1}{t} \notin A$ so we must have $\frac{1}{s} \notin A$ and hence $\frac{1}{s} \in A^{-1}$.
iii. Let $t \in A^{-1}$. If $t<0$, let $s=\frac{t}{2}$. So assume $t \geq 0$. Then $\frac{1}{t} \notin A$ and there exists and $r \notin A$ such that $r<\frac{1}{t}$. Since \mathbb{Q} is dense, there exists a rational number $r<s<\frac{1}{t}$ that is also not in A (If $t=0$ choose any $s>r$.). Then we have that $\frac{1}{s} \notin A$ and that $r<s$, so we have $\frac{1}{s} \in A^{-1}$ and $t<\frac{1}{s}$.
(b) $A A^{-1} \subseteq I$ Let $t \in A A^{-1}$ with $t \leq 0$, then $t \in I$. Let $a \in A$ and $b \in A^{-1}$ with $a, b>0$. (Note that $a=b=1$ is a contradiction, since that would imply that $\frac{1}{b} \in A$, so we must have one of less than 1.) Since $\frac{1}{b} \notin A$ we have $a<\frac{1}{b}$ and hence

$$
a b<\left(\frac{1}{b}\right) b=1
$$

Hence $a b \in I$.
(c) $I \subseteq A A^{-1}$ If $A=I$ then $A^{-1}=I$ so there is nothing to show, so assume not.

WLOG assume that $A \subseteq I \subseteq A^{-1}$. Let $r \in I$. If $r \leq 0$, then $r \in A A^{-1}$. Now assume that we have $0<r<1$. There exits an $n \in \mathbb{N}$ such that $r^{n} \in A$ and $r^{n-1} \notin A$. If $\frac{1}{r^{n-1}} \in A^{-1}$ we have

$$
r=r^{n}\left(\frac{1}{r^{n-1}}\right)
$$

and are done. So assume that $\frac{1}{r^{n-1}} \notin A^{-1}$. This means that for every $\epsilon>0$ we have $r^{n-1}-\epsilon \in A$. So we can find a rational $\epsilon>0$ such that

$$
r^{n}<r\left(r^{n-1}+\epsilon\right)<r^{n-1}
$$

by the density of the rational numbers. So we have $\frac{1}{r^{n-1}+\epsilon} \in A^{-1}$ since $\left(r^{n-1}+\epsilon\right) \notin A$ and $r^{n-1}<r^{n-1}+\epsilon$. But also note that $r\left(r^{n-1}+\epsilon\right) \in A$.

$$
r=r\left(r^{n-1}+\epsilon\right) \frac{1}{r^{n-1}+\epsilon} \in A A^{-1}
$$

4. (Distributive Property): We show inclusion in both ways.
(a) If $t \in C(A+B)$ then we can write $t=c(a+b)$. Since these are all rational numbers we have $t=c a+c b \in C A+C B$.
(b) If $t \in C A+C B$ then we can write $t=c a+c b$. Since these are all rational number we have $t=c(a+b) \in C(A+B)$.
5. (Respects ordering): By the definition of $A B$ this is trivial.

Remark. You will show for homework the embedding $\mathbb{Q} \subseteq \mathbb{R}$:
Let $C_{r}=\{t \in \mathbb{Q} \mid t<r\}$. Then we have

1. $C_{r}+C_{s}=C_{r+s}$
2. $C_{r} C_{s}=C_{r s}$.
3. etc.

For $r \in \mathbb{Q}$ this provides \mathbb{Q} and a subfield of \mathbb{R} (as cuts).

4 Least Upper Bounds

Definition. A set $\mathcal{A} \subseteq \mathbb{R}$ is bounded above if there exists a $B \in \mathbb{R}$ such that $A \leq B$ for all $A \in \mathcal{A}$. B is called an upper bound for $A . S \in R$ is a least upper bound for \mathcal{A} if it satisfies

1. S is an upper bound for \mathcal{A}.
2. If B is any upper bound for \mathcal{A}, then $S \leq B$.

Theorem. Let $S=\cup_{A \in \mathcal{A}} A$. S is the least upper bound for \mathcal{A}.

Proof.

1. First we show that S is a cut.
(a) Since $\mathcal{A} \neq \emptyset$, then $S \neq \emptyset$. Since \mathcal{A} is bounded above by some cut B we have $S \leq B$. Since $B \neq \mathbb{Q}$ we have $S \neq \mathbb{Q}$.
(b) Let $a \in S$ and $r \in \mathbb{Q}$ with $r<a$. Since $a \in S$, then $a \in A$ for some $A \in S$. Hence we have $r \in A$ and hence $r \in S$.
(c) Let $a \in S$, then $a \in A$ for some $A \in S$. Therefore, there is an $r \in A$ such that $a<r$ and since $r \in A$, then $r \in S$.
2. Now we need to show that it is in fact a least upper bound.
(a) S is an upper bound for \mathcal{A} since $A \leq S$ for all $A \in \mathcal{A}$.
(b) Let B be an arbitrary upper bound for \mathcal{A}. We need $S \leq B$. Let $s \in S$. There fore $s \in A$ for some $A \in \mathcal{A}$ and hence $s \in B$. Therefor $S \leq B$.

Since least upper bounds exists and \mathbb{R} is complete. \mathbb{R} is also an ordered field containing \mathbb{Q}.
Remark. Cantor used equivalence classes of Cauchy sequences to define \mathbb{R}. (two Cauchy sequences are equivalent if $\left(x_{n}-y_{n}\right) \rightarrow 0$.
Remark. Cuts may seem a weird concept compared to a decimal number, but with decimals how do you resolve the fact that $.5=.49 \overline{9}$.

