Introduction to Analysis
Constructing R from Q
Definition. A subset A C Q is called a cut if it posses the following three properties
1. A#0and A# Q.
2. If r € A, then also A contains every rational ¢ < r.
3. A does not have a maximum, that is, if » € A, then there exists an s € A with r < s.

Remark. Note that for a cut A, if r € A and s € A, then r < s. This is because all rational ¢ < r are in
A. Hence, a rational number s ¢ A must satisfy r < s.

Example.
1. C,={teQ|t<r}
2. {teQ|t<V2}={teQ|t<V2
3. Notacut {t€Q|t <2}

Definition. The real numbers, denoted R, is the set of all cuts in Q.

1 Ordering on Cuts

Theorem. (Ordering on R) Inclusion of sets (C) is an ordering on cuts.
Proof. We need to prove the three properties of an ordering;:
1. For arbitrary cuts A, B € R at least one of A C B or B C A is true.
Proof. If A C B then we are done, so assume not. We need to show that B C A. By assumption,
there exists an element a € A such that a ¢ B. Let b € B be arbitrary. Since a ¢ B the lemma
implies that b < a and by definition of a cut we must have b € A. O
2. If AC Band B C A then A = B.
Proof. This is standard definition of equality of sets. O

3. (transitive) If A C B and B C C then A C C.

Proof. Again, trivial since we are working with sets. O



2 Addition on Cuts

Theorem. (Addition in R) Given A, B,C € R we define
1. A+B={a+bla€c Abe B} suchthat A+ B=B+ A and (A+B)+C=A+(B+C).
2. 0={teQ|t <0} such that A+ O = A.
3. —A={reQ| there exists t ¢ A witht < —r} such that A+ (—A) =0
4. IfACC then A+ BCA+C
Proof. Let A, B be two cuts.

1. (Addition) We first need to see that A + B is a cut, then we need to check that addition satisfies:
commutativity, associativity, identities exist, and inverses exist.

(a) (A+ B is a cut):

i. First we see that A + B is non-empty since A, B are non-empty. To see that A+ B # Q
we find an upper bound for A+ B. Let I; ¢ A and ls ¢ B. For any a € A and b € B we
have that a < I; and b < l5. Hence we have [; + [; as an upper bound of A + B.

ii. Let r=a+b€ A+ B. Let s € Q such that s < r. Then we have s < a + b and hence
s—b<a. Hence s—be A. Sowe have s=(s—b)+be A+ B.

iii. To see that A+ B does not have a maximum, fix ¢ € A+ B and write ¢ = a + b for some
a € Aand b e B. So there exists and s € A with a < s and an r € B with b < r. So we
havec=a+b<s+r.

(b) (Commutative): We simply write

A+B={a+b|la€ Abe B}
={b+alacAbe B}
=B+ A.

(c) (Associative): Let C be a third cut. Then we simply write

(A+B)+C={(a+b)+c|lacAbe B,ceC}
={a+(b+c)|ac Abe B,ceC}
=A+(B+C).

2. (Identity): Let O ={p e Q| p < 0}.

(a) O is clearly a cut.

(b) We need to show that A+ O C Aand AC A+ O.

Let a+b€ A+ O. Then we have a + b < a € A. Similarly, let a € A. Then for some € > 0,
s+e€ A Then (s+¢)—(—¢) € A+ B.

3. (Additive Inverse): Let —A = {r e Q| 3t ¢ A with t < —r}.
(a) (—Ais a cut): Note that for A ={r € Q| r < 1/2 we have that —A={re Q| r < —-1/2}.



i. Since A # Q there exists a t ¢ A. Since t < t 4+ 1 we can conclude that —(¢t+ 1) € —A by
the definition of —A, so we have —A is non-empty.

ii. To show —A # Q we know that A is non-empty so there exists an a € A. If r € —A,
there exists a t ¢ A with t < —r. Then t € A implies that a < t and hence r < —a. So
—A is bounded above by —a.

iii. Let » € —A and consider s € Q with s < r. We need s € —A. Because r € —A there
exists a t € A with ¢ < —r. Since s < r implies —r < —s we have t < —s and hence
s e —A.

iv. Let r € —A, then there exists a t € A with ¢ < —r. By the density of Q we can choose
an s € Q such that t < s < —r. Hence —s € —A and because r < —s, we see that —A
does not possess a maximum.

(A4+—-A=0): Let r € —A. Because —r € —A we know there exists a t ¢ A with ¢t < —r.
Since t ¢ A we have a < t for all a € A, and hence a < —r. Thus, a+r <0andsoa+r € O
as needed to show that A+ (—A) C O.

To show the reverse inclusion let 0 € O and we need to find an @ € A and a b € —A such that
a+b=o. Let e =14 = =2 Now choose t € Q such that t ¢ A andt —e € A. t ¢ A implies
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that —(t 4+ €) € —A. So we have

—(t+e)+(t—e€)=—-2e=0.

4. (Respects ordering): Assume that A C B. Then consider 7 = a + ¢ € A+ C. Then we have
r € B+ C since a € B by assumption.

O

3 Multiplication in R

Theorem. (Multiplication in R) Let A, B > O be in R.

1. For AAB2 O, AB={ab|a€ A,be B witha,b>0}U{q€Q,q <0}

2. I={teQ|t<1} such that AI = A.

3. For A0, A"V ={teQ|+¢ A IrgAstr <2} U{t €Q|t <0} such that AA~" +1.

4. C(A+B)=CA+CB.

5. AC D O.

Remark. For negative multiplication and inverse, we take — A.

Proof.

1. (AB is a cut)

(a) AB is not empty because all rational numbers ¢t < 0 are in AB. Let s,t be upper bounds for

A and B respectively. Then AB is bounded above by st, so AB cannot be all of Q.



(b) Let t € AB be arbitrary and let s € Q satisfy s < ¢t. If s < 0 the s € AB by the definition of
our product, so let 0 < s < t. So we have t = ab with a € A and b € B and a,b > 0. Because
s < ab we have § < a and hence 7 € A. Then
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(c) Let t € AB. If t < 0 then ¢ < ¢/2 and ¢/2 € AB since t/2 < 0 as well. If ¢ > 0, then ¢ = ab
for some a € A and b € B. Applying the 3rd property of cuts to A, B yields s € A and r € B
such that a < s and b < r. So we have sr € AB and ab < sr.

2. (Multiplicative Identity):

(a) We first show that I is a cut
i. This is easy since 0 € I and 2 ¢ I.
ii. Assume that ¢ € I, then for s < t we have s < 1 and hence s € I.
iii. Let t € I. If t <0, then t <t/2 € I. if t > 0 then t < 1 € 1.

(b) (AI C A): Let ¢ € AI. Because I D O, then either ¢ < 0 or ¢ = ab with a,b >0 and a € A
and b < 1. If ¢ < 0, then g € A since A > O. In the other case, ¢ = ab < a and hence ab € A.

(c) (AC AI): Let a € A. If a < 0 then a € ATl by the product of cuts. If @ > 0, then we can
pick a t € A with a < t. Hence ¢ < 1 and hence ¢ € I. So we have
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3. (Multiplicative Inverse)

(a) A=lis a cut.
i. First, —1 € A~! soit is not empty. So we need to show it isnot allof Q. Let 0 <t #0 € A
(this is possible, since A # O and A 2 O). Then + ¢ A~1.
ii. Let t € A~!. Assume that s < ¢t. Then we have % < % and that % ¢ A so we must have
% ¢ A and hence % € AL
iii. Let t € A7L If t <0, let s = % So assume t > 0. Then % ¢ A and there exists and
r & A such that r < % Since Q is dense, there exists a rational number r < s < % that
is also not in A (If t = 0 choose any s > r.). Then we have that % ¢ A and that r < s,
so we have L € A~ and ¢t < 1.
(b) AA"P C T Lette AA™! witht <0,thent € I. Let a € A and b € A~! with a,b > 0. (Note
that a = b =1 is a contradiction, since that would imply that % € A, so we must have one of
less than 1.) Since 3 ¢ A we have a < § and hence
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Hence ab € 1.



(c) I C AA=YIf A= 1 then A~! = I so there is nothing to show, so assume not.

WLOG assume that AC I C A~ Letr € I. If r <0, then »r € AA~!. Now assume that we
have 0 < r < 1. There exits an n € N such that 7 € A and 7"~ ' ¢ A. If =L+ € A~ we have
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and are done. So assume that M%l g A~'. This means that for every ¢ > 0 we have
r"~! —e€ A. So we can find a rational € > 0 such that

r" < r(r"_l +e) < ot

by the density of the rational numbers. So we have —=— € A~! since (r"~! +¢) ¢ A and

+e
r"~1 <"~ 4 €. But also note that r(r"~! +¢) € A.
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4. (Distributive Property): We show inclusion in both ways.

(a) If t € C(A + B) then we can write t = c(a + b). Since these are all rational numbers we have
t=ca+cbe CA+CB.

(b) If t € CA + CB then we can write ¢t = ca + ¢b. Since these are all rational number we have
t=cla+b) € C(A+ B).

5. (Respects ordering): By the definition of AB this is trivial.

Remark. You will show for homework the embedding Q C R:
Let C, = {t € Q| t < r}. Then we have

1. Cp +C5 = Chrys
2. C.Cy =C,,.
3. etc.

For r € Q this provides Q and a subfield of R (as cuts).

4 Least Upper Bounds

Definition. A set A C R is bounded above if there exists a B € R such that A < B forall A€ A. Bis
called an upper bound for A. S € R is a least upper bound for A if it satisfies

1. S is an upper bound for A.
2. If B is any upper bound for A, then S < B.

Theorem. Let S =UgcaA. S is the least upper bound for A.



Proof.
1. First we show that S is a cut.

(a) Since A # (), then S # ). Since A is bounded above by some cut B we have S < B. Since
B # Q we have S # Q.

(b) Let a € S and r € Q with r < a. Since a € S, then a € A for some A € S. Hence we have
r € A and hence r € S.

(c) Let a € S, then a € A for some A € S. Therefore, there is an r € A such that a < r and
since r € A, then r € S.

2. Now we need to show that it is in fact a least upper bound.

(a) S is an upper bound for A since A < S for all A € A.
(b) Let B be an arbitrary upper bound for A. We need S < B. Let s € S. There fore s € A for
some A € A and hence s € B. Therefor S < B.

O

Since least upper bounds exists and R is complete. R is also an ordered field containing Q.

Remark. Cantor used equivalence classes of Cauchy sequences to define R. (two Cauchy sequences are
equivalent if (2, — y,) — 0.

Remark. Cuts may seem a weird concept compared to a decimal number, but with decimals how do you
resolve the fact that .5 = .499.



