Introduction to Analysis Constructing \mathbb{R} from \mathbb{Q}

Definition. A subset $A \subset \mathbb{Q}$ is called a *cut* if it posses the following three properties

- 1. $A \neq \emptyset$ and $A \neq \mathbb{Q}$.
- 2. If $r \in A$, then also A contains every rational q < r.
- 3. A does not have a maximum, that is, if $r \in A$, then there exists an $s \in A$ with r < s.

Remark. Note that for a cut A, if $r \in A$ and $s \notin A$, then r < s. This is because all rational q < r are in A. Hence, a rational number $s \notin A$ must satisfy r < s.

Example.

- 1. $C_r = \{t \in \mathbb{Q} \mid t < r\}$
- 2. $\{t \in \mathbb{Q} \mid t < \sqrt{2}\} = \{t \in \mathbb{Q} \mid t \le \sqrt{2}\}$
- 3. Not a cut $\{t \in \mathbb{Q} \mid t \leq 2\}$.

Definition. The real numbers, denoted \mathbb{R} , is the set of all cuts in \mathbb{Q} .

1 Ordering on Cuts

Theorem. (Ordering on \mathbb{R}) Inclusion of sets (\subseteq) is an ordering on cuts.

Proof. We need to prove the three properties of an ordering:

1. For arbitrary cuts $A, B \in \mathbb{R}$ at least one of $A \subseteq B$ or $B \subseteq A$ is true.

Proof. If $A \subseteq B$ then we are done, so assume not. We need to show that $B \subseteq A$. By assumption, there exists an element $a \in A$ such that $a \notin B$. Let $b \in B$ be arbitrary. Since $a \notin B$ the lemma implies that b < a and by definition of a cut we must have $b \in A$.

2. If $A \subseteq B$ and $B \subseteq A$ then A = B.

Proof. This is standard definition of equality of sets. \Box

3. (transitive) If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Proof. Again, trivial since we are working with sets.

2 Addition on Cuts

Theorem. (Addition in \mathbb{R}) Given $A, B, C \in \mathbb{R}$ we define

- 1. $A + B = \{a + b \mid a \in A, b \in B\}$ such that A + B = B + A and (A + B) + C = A + (B + C).
- 2. $O = \{t \in \mathbb{Q} \mid t < 0\}$ such that A + O = A.
- 3. $-A = \{r \in \mathbb{Q} \mid \text{ there exists } t \notin A \text{ with } t < -r\} \text{ such that } A + (-A) = O$
- 4. If $A \subseteq C$ then $A + B \subseteq A + C$

Proof. Let A, B be two cuts.

- 1. (Addition) We first need to see that A + B is a cut, then we need to check that addition satisfies: commutativity, associativity, identities exist, and inverses exist.
 - (a) (A + B is a cut):
 - i. First we see that A + B is non-empty since A, B are non-empty. To see that $A + B \neq \mathbb{Q}$ we find an upper bound for A + B. Let $l_1 \notin A$ and $l_2 \notin B$. For any $a \in A$ and $b \in B$ we have that $a < l_1$ and $b < l_2$. Hence we have $l_1 + l_2$ as an upper bound of A + B.
 - ii. Let $r = a + b \in A + B$. Let $s \in \mathbb{Q}$ such that s < r. Then we have s < a + b and hence s b < a. Hence $s b \in A$. So we have $s = (s b) + b \in A + B$.
 - iii. To see that A + B does not have a maximum, fix $c \in A + B$ and write c = a + b for some $a \in A$ and $b \in B$. So there exists and $s \in A$ with a < s and an $r \in B$ with b < r. So we have c = a + b < s + r.
 - (b) (Commutative): We simply write

$$A + B = \{a + b \mid a \in A, b \in B\}$$
$$= \{b + a \mid a \in A, b \in B\}$$
$$= B + A.$$

(c) (Associative): Let C be a third cut. Then we simply write

$$(A+B) + C = \{(a+b) + c \mid a \in A, b \in B, c \in C\}$$

= $\{a + (b+c) \mid a \in A, b \in B, c \in C\}$
= $A + (B+C).$

- 2. (Identity): Let $O = \{ p \in \mathbb{Q} \mid p < 0 \}.$
 - (a) O is clearly a cut.
 - (b) We need to show that $A + O \subseteq A$ and $A \subseteq A + O$. Let $a + b \in A + O$. Then we have $a + b < a \in A$. Similarly, let $a \in A$. Then for some $\epsilon > 0$, $s + \epsilon \in A$. Then $(s + \epsilon) - (-\epsilon) \in A + B$.
- 3. (Additive Inverse): Let $-A = \{r \in \mathbb{Q} \mid \exists t \notin A \text{ with } t < -r\}.$
 - (a) (-A is a cut): Note that for $A = \{r \in \mathbb{Q} \mid r < 1/2 \text{ we have that } -A = \{r \in \mathbb{Q} \mid r < -1/2\}.$

- i. Since $A \neq \mathbb{Q}$ there exists a $t \notin A$. Since t < t+1 we can conclude that $-(t+1) \in -A$ by the definition of -A, so we have -A is non-empty.
- ii. To show $-A \neq \mathbb{Q}$ we know that A is non-empty so there exists an $a \in A$. If $r \in -A$, there exists a $t \notin A$ with t < -r. Then $t \notin A$ implies that a < t and hence r < -a. So -A is bounded above by -a.
- iii. Let $r \in -A$ and consider $s \in \mathbb{Q}$ with s < r. We need $s \in -A$. Because $r \in -A$ there exists a $t \notin A$ with t < -r. Since s < r implies -r < -s we have t < -s and hence $s \in -A$.
- iv. Let $r \in -A$, then there exists a $t \notin A$ with t < -r. By the density of \mathbb{Q} we can choose an $s \in \mathbb{Q}$ such that t < s < -r. Hence $-s \in -A$ and because r < -s, we see that -Adoes not possess a maximum.
- (b) (A + -A = O): Let $r \in -A$. Because $-r \in -A$ we know there exists a $t \notin A$ with t < -r. Since $t \notin A$ we have a < t for all $a \in A$, and hence a < -r. Thus, a + r < 0 and so $a + r \in O$ as needed to show that $A + (-A) \subseteq O$.

To show the reverse inclusion let $o \in O$ and we need to find an $a \in A$ and a $b \in -A$ such that a + b = o. Let $\epsilon = \frac{|o|}{2} = \frac{-o}{2}$. Now choose $t \in \mathbb{Q}$ such that $t \notin A$ and $t - \epsilon \in A$. $t \notin A$ implies that $-(t + \epsilon) \in -A$. So we have

$$-(t+\epsilon) + (t-\epsilon) = -2\epsilon = o.$$

4. (Respects ordering): Assume that $A \subseteq B$. Then consider $r = a + c \in A + C$. Then we have $r \in B + C$ since $a \in B$ by assumption.

3 Multiplication in \mathbb{R}

Theorem. (Multiplication in \mathbb{R}) Let $A, B \ge O$ be in \mathbb{R} .

- 1. For $A, B \supseteq O$, $AB = \{ab \mid a \in A, b \in B \text{ with } a, b \ge 0\} \cup \{q \in \mathbb{Q}, q < 0\}$
- 2. $I = \{t \in \mathbb{Q} \mid t < 1\}$ such that AI = A.
- 3. For $A \neq O$, $A^{-1} = \{t \in \mathbb{Q} \mid \frac{1}{t} \notin A, \exists r \notin As.t.r < \frac{1}{t}\} \cup \{t \in \mathbb{Q} \mid t \leq 0\}$ such that $AA^{-1} + I$.
- 4. C(A+B) = CA + CB.
- 5. $AC \supseteq O$.

Remark. For negative multiplication and inverse, we take -A.

Proof.

- 1. (AB is a cut)
 - (a) AB is not empty because all rational numbers t < 0 are in AB. Let s, t be upper bounds for A and B respectively. Then AB is bounded above by st, so AB cannot be all of \mathbb{Q} .

(b) Let $t \in AB$ be arbitrary and let $s \in \mathbb{Q}$ satisfy s < t. If s < 0 the $s \in AB$ by the definition of our product, so let $0 \le s < t$. So we have t = ab with $a \in A$ and $b \in B$ and a, b > 0. Because s < ab we have $\frac{s}{b} < a$ and hence $\frac{s}{b} \in A$. Then

$$s = \left(\frac{s}{b}\right)(b) \in AB$$

- (c) Let $t \in AB$. If t < 0 then t < t/2 and $t/2 \in AB$ since t/2 < 0 as well. If $t \ge 0$, then t = ab for some $a \in A$ and $b \in B$. Applying the 3rd property of cuts to A, B yields $s \in A$ and $r \in B$ such that a < s and b < r. So we have $sr \in AB$ and ab < sr.
- 2. (Multiplicative Identity):
 - (a) We first show that I is a cut
 - i. This is easy since $0 \in I$ and $2 \notin I$.
 - ii. Assume that $t \in I$, then for s < t we have s < 1 and hence $s \in I$.
 - iii. Let $t \in I$. If t < 0, then $t < t/2 \in I$. if $t \ge 0$ then $t < \frac{t+1}{2} \in I$.
 - (b) $(AI \subseteq A)$: Let $q \in AI$. Because $I \supseteq O$, then either q < 0 or q = ab with $a, b \ge 0$ and $a \in A$ and b < 1. If q < 0, then $q \in A$ since $A \ge O$. In the other case, q = ab < a and hence $ab \in A$.
 - (c) $(A \subseteq AI)$: Let $a \in A$. If a < 0 then $a \in AI$ by the product of cuts. If $a \ge 0$, then we can pick a $t \in A$ with a < t. Hence $\frac{a}{t} < 1$ and hence $\frac{a}{t} \in I$. So we have

$$a = (t) \left(\frac{a}{t}\right) \in AI.$$

- 3. (Multiplicative Inverse)
 - (a) A^{-1} is a cut.
 - i. First, $-1 \in A^{-1}$ so it is not empty. So we need to show it is not all of \mathbb{Q} . Let $0 \leq t \neq 0 \in A$ (this is possible, since $A \neq O$ and $A \supseteq O$). Then $\frac{1}{t} \notin A^{-1}$.
 - ii. Let $t \in A^{-1}$. Assume that s < t. Then we have $\frac{1}{t} < \frac{1}{s}$ and that $\frac{1}{t} \notin A$ so we must have $\frac{1}{s} \notin A$ and hence $\frac{1}{s} \in A^{-1}$.
 - iii. Let $t \in A^{-1}$. If t < 0, let $s = \frac{t}{2}$. So assume $t \ge 0$. Then $\frac{1}{t} \notin A$ and there exists and $r \notin A$ such that $r < \frac{1}{t}$. Since \mathbb{Q} is dense, there exists a rational number $r < s < \frac{1}{t}$ that is also not in A (If t = 0 choose any s > r.). Then we have that $\frac{1}{s} \notin A$ and that r < s, so we have $\frac{1}{s} \in A^{-1}$ and $t < \frac{1}{s}$.
 - (b) $AA^{-1} \subseteq I$ Let $t \in AA^{-1}$ with $t \leq 0$, then $t \in I$. Let $a \in A$ and $b \in A^{-1}$ with a, b > 0. (Note that a = b = 1 is a contradiction, since that would imply that $\frac{1}{b} \in A$, so we must have one of less than 1.) Since $\frac{1}{b} \notin A$ we have $a < \frac{1}{b}$ and hence

$$ab < \left(\frac{1}{b}\right)b = 1$$

Hence $ab \in I$.

(c) $I \subseteq AA^{-1}$ If A = I then $A^{-1} = I$ so there is nothing to show, so assume not.

WLOG assume that $A \subseteq I \subseteq A^{-1}$. Let $r \in I$. If $r \leq 0$, then $r \in AA^{-1}$. Now assume that we have 0 < r < 1. There exits an $n \in \mathbb{N}$ such that $r^n \in A$ and $r^{n-1} \notin A$. If $\frac{1}{r^{n-1}} \in A^{-1}$ we have

$$r = r^n \left(\frac{1}{r^{n-1}}\right)$$

and are done. So assume that $\frac{1}{r^{n-1}} \notin A^{-1}$. This means that for every $\epsilon > 0$ we have $r^{n-1} - \epsilon \in A$. So we can find a rational $\epsilon > 0$ such that

$$r^n < r(r^{n-1} + \epsilon) < r^{n-1}$$

by the density of the rational numbers. So we have $\frac{1}{r^{n-1}+\epsilon} \in A^{-1}$ since $(r^{n-1}+\epsilon) \notin A$ and $r^{n-1} < r^{n-1} + \epsilon$. But also note that $r(r^{n-1}+\epsilon) \in A$.

$$r = r(r^{n-1} + \epsilon) \frac{1}{r^{n-1} + \epsilon} \in AA^{-1}$$

- 4. (Distributive Property): We show inclusion in both ways.
 - (a) If $t \in C(A + B)$ then we can write t = c(a + b). Since these are all rational numbers we have $t = ca + cb \in CA + CB$.
 - (b) If $t \in CA + CB$ then we can write t = ca + cb. Since these are all rational number we have $t = c(a + b) \in C(A + B)$.
- 5. (Respects ordering): By the definition of AB this is trivial.

Remark. You will show for homework the embedding $\mathbb{Q} \subseteq \mathbb{R}$: Let $C_r = \{t \in \mathbb{Q} \mid t < r\}$. Then we have

1.
$$C_r + C_s = C_{r+s}$$

- 2. $C_r C_s = C_{rs}$.
- 3. etc.

For $r \in \mathbb{Q}$ this provides \mathbb{Q} and a subfield of \mathbb{R} (as cuts).

4 Least Upper Bounds

Definition. A set $\mathcal{A} \subseteq \mathbb{R}$ is bounded above if there exists a $B \in \mathbb{R}$ such that $A \leq B$ for all $A \in \mathcal{A}$. B is called an upper bound for A. $S \in R$ is a least upper bound for \mathcal{A} if it satisfies

- 1. S is an upper bound for \mathcal{A} .
- 2. If B is any upper bound for \mathcal{A} , then $S \leq B$.

Theorem. Let $S = \bigcup_{A \in \mathcal{A}} A$. S is the least upper bound for \mathcal{A} .

Proof.

- 1. First we show that S is a cut.
 - (a) Since $\mathcal{A} \neq \emptyset$, then $S \neq \emptyset$. Since \mathcal{A} is bounded above by some cut B we have $S \leq B$. Since $B \neq \mathbb{Q}$ we have $S \neq \mathbb{Q}$.
 - (b) Let $a \in S$ and $r \in \mathbb{Q}$ with r < a. Since $a \in S$, then $a \in A$ for some $A \in S$. Hence we have $r \in A$ and hence $r \in S$.
 - (c) Let $a \in S$, then $a \in A$ for some $A \in S$. Therefore, there is an $r \in A$ such that a < r and since $r \in A$, then $r \in S$.
- 2. Now we need to show that it is in fact a least upper bound.
 - (a) S is an upper bound for \mathcal{A} since $A \leq S$ for all $A \in \mathcal{A}$.
 - (b) Let B be an arbitrary upper bound for \mathcal{A} . We need $S \leq B$. Let $s \in S$. There fore $s \in A$ for some $A \in \mathcal{A}$ and hence $s \in B$. Therefor $S \leq B$.

Since least upper bounds exists and \mathbb{R} is complete. \mathbb{R} is also an ordered field containing \mathbb{Q} .

Remark. Cantor used equivalence classes of Cauchy sequences to define \mathbb{R} . (two Cauchy sequences are equivalent if $(x_n - y_n) \to 0$.

Remark. Cuts may seem a weird concept compared to a decimal number, but with decimals how do you resolve the fact that $.5 = .49\overline{9}$.