Math 28 Spring 2008: Exam 1

Instructions: Each problem is scored out of 10 points for a total of 50 points. You may not use any outside materials(eg. notes or calculators). You have 50 minutes to complete this exam.

Problem 1. Let $A \subseteq \mathbb{R}$ be bounded above. Show that $\sup (A) \in \bar{A}$.
Problem 2. Let $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$ be convergent sequences. Show directly that $\left(a_{n}-b_{n}\right) \rightarrow a-b$. (i.e. without using the Algebraic Limit theorem).

Problem 3.

(a) State the definition of a compact set and the characterization of compact sets by the Heine-Borel Theorem.
(b) Show that the union of finitely many compact sets is compact.

Problem 4. Prove the $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if for any $m \in \mathbb{N} \sum_{n=1}^{\infty} a_{m+n}$ is convergent. Moreover, $\sum_{n=1}^{\infty} a_{n}$ converges to $a_{1}+\cdots+a_{m}+\sum_{n=1}^{\infty} a_{n+m}$.

Problem 5.

(a) State the Monotone Converge Theorem.
(b) Define $a_{1}=1$ and $a_{n}=3-\frac{1}{a_{n-1}}$ for $n \geq 2$. Determine the convergence or divergence of the sequence $\left(a_{n}\right)$.

