Math 13 Fall 2009: Exam 2

November 4, 2009

Name:

Instructions: There are 4 questions on this exam each scored out of 8 points for a total of 32 points. You may not use any outside materials(eg. notes or calculators). You have 50 minutes to complete this exam. Remember to fully justify your answers.

Score:

Problem 1. Define

$$
f(x, y)= \begin{cases}\frac{2 x^{4}-x^{3}+x y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(a) Determine where $f(x, y)$ is continuous.
(b) Use the limit definition of partial derivatives to compute $f_{x}(0,0)$.

Proof.
(a) The function $f(x, y)$ is a rational function so is continuous everywhere its denominator is defined. Its denominator is the sum of two squares, so is 0 only when $x=y=0$. So we just need to determine whether $f(x, y)$ is continuous at $(0,0)$. So we just need to check whether $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=$ $f(0,0)=0$. We first see

$$
\begin{aligned}
\left|\frac{2 x^{4}-x^{3}+x y^{2}}{x^{2}+y^{2}}\right| & =\left|\frac{2 x^{4}-x^{3}}{x^{2}+y^{2}}+\frac{x y^{2}}{x^{2}+y^{2}}\right| \\
& \leq\left|\frac{2 x^{4}-x^{3}}{x^{2}}+\frac{x y^{2}}{y^{2}}\right| \\
& \leq\left|\frac{2 x^{4}-x^{3}}{x^{2}}\right|+\left|\frac{x y^{2}}{y^{2}}\right| \\
& =\left|2 x^{2}-x\right|+|x|
\end{aligned}
$$

So in particular

$$
-\left(\left|2 x^{2}-x\right|+|x|\right) \leq \frac{2 x^{4}-x^{3}+x y^{2}}{x^{2}+y^{2}} \leq\left|2 x^{2}-x\right|+|x|
$$

Taking the limits of the two outside functions we have

$$
\begin{array}{r}
\lim _{x \rightarrow 0}-\left(\left|2 x^{2}-x\right|+|x|\right)=0 \\
\lim _{x \rightarrow 0}\left|2 x^{2}-x\right|+|x|=0
\end{array}
$$

so by the squeeze theorem we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)
$$

Therefore $f(x, y)$ is continuous on \mathbb{R}^{2}.
(b) We compute

$$
\begin{aligned}
\left.f_{x}(0,0)\right) & =\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2 h^{4}-h^{3}}{h^{2}}-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} 2 h-1 \\
& =-1 .
\end{aligned}
$$

Problem 2.

(a) Given $z=2 x^{2}-3 x y+7 y^{2}$ and $x=u \sin v, y=v \cos u$, find $\frac{\partial z}{\partial u}$ in terms of u and v.
(b) Given $f(x, y, z)=\sqrt{x y z}$ and two points $P=(2,1,2)$ and $Q=(-1,1,6)$. Find the directional derivative of f at P in the direction of Q.

Proof.
(a) We have

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
& =(4 x-3 y) \sin v+(-3 x+14 y)(-v \sin u) \\
& =4 u \sin ^{2} v-3 v \cos u \sin v+3 u v \sin v \sin u-v^{2} \cos u \sin u
\end{aligned}
$$

(b) We have $\nabla f=\left\langle\frac{y z}{2 \sqrt{x y z}}, \frac{x z}{2 \sqrt{x y z}}, \frac{x y}{2 \sqrt{x y z}}\right\rangle$ and

$$
\nabla f(2,1,2)=\frac{1}{2}\langle 1,2,1\rangle
$$

The direction is given by

$$
\vec{u}=\frac{\langle-3,0,4\rangle}{5}
$$

So we compute

$$
D_{u} f=\frac{-3+0+4}{10}=\frac{1}{10}
$$

Problem 3. Find the maximal volume of a rectangular box which has three faces in the coordinates planes and one vertex in the first octant on the paraboloid $z=4-x^{2}-y^{2}$.

Proof. Let (x, y, z) be the corner of the box on the paraboloid. Then we need to maximize $V=x y z$ subject to $z+x^{2}+y^{2}-4=0$. So we have the Lagrange system

$$
\begin{aligned}
y z & =\lambda 2 x \\
x z & =\lambda 2 y \\
x y & =\lambda \\
0 & =z+x^{2}+y^{2}-4
\end{aligned}
$$

So we have

$$
\begin{aligned}
y z & =2 x^{2} y \\
x z & =2 x y^{2} \\
0 & =z+x^{2}+y^{2}-4
\end{aligned}
$$

We have $\lambda=x y$ and $x, y \neq 0$ since otherwise the volume is 0 , so

$$
\begin{aligned}
& z=2 x^{2} \\
& z=2 y^{2} \\
& 0=z+x^{2}+y^{2}-4
\end{aligned}
$$

This gives $x^{2}=y^{2}$ and hence $x= \pm y$. From the constraint we have

$$
2 y^{2}+2 y^{2}=4
$$

which is

$$
y= \pm 1
$$

and so we have the possible solutions $(x, y)=(\pm 1, \pm 1)$. Since we must be in the first octant, we can only have $(1,1)$. Therefore, we have $x=1, y=1, z=2$, for a maximal volume of 2 .

Problem 4. Classify the critical points of $f(x, y)=6 x y^{2}-2 x^{3}-3 y^{4}$.
Proof. We find the critical points as

$$
\begin{aligned}
& f_{x}=6 y^{2}-6 x^{2}=0 \\
& f_{y}=12 x y-12 y^{3}=0
\end{aligned}
$$

If $y=0$, then we have $x=0$ and the critical point $(0,0)$.
If $y \neq 0$ we have

$$
\begin{aligned}
& f_{x}: x^{2}=y^{2} \\
& f_{y}: x=y^{2}
\end{aligned}
$$

so we have the critical points $(1, \pm 1)$.
Applying the second derivative test we compute

$$
\begin{aligned}
f_{x x} & =-12 x \\
f_{x y} & =12 y \\
f_{y y} & =12 x-36 y^{2}
\end{aligned}
$$

So we have

$$
\begin{aligned}
D(0,0) & =0 \\
D(1,1) & =(-12)(-24)-(12)^{2}>0 \\
D(1,-1) & =(-12)(-24)-(-12)^{2}>0
\end{aligned}
$$

At $(1, \pm 1)$ we have a local maximum since $D>0$ and $f_{x x}<0$ at those points. However, at $(0,0)$ the test is inconclusive. Examining the function we see that

$$
\begin{aligned}
& f(0, y)=-3 y^{4} \\
& f(x, 0)=-3 x^{3}
\end{aligned}
$$

For $(0,0)$ we have $f(0,0)=0$. Near $(0,0)$, for $x=0$ and $y \neq 0$ we get a positive value. For $y=0$ and $x<0$ we get a positive value. These values both exist arbitrarily close to $(0,0)$ so we know that $(0,0)$ is neither a max nor a min and is therefore a saddle point.

