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Abstract 

 
Policy makers and economists suggest that low-income households in the U.S. do 

not save enough.  Many of the low-income individuals who tend to save too little also 

engage in gambling activities more than the general population.  As a result, Prize-Linked 

Savings (PLS) Programs, which combine the prospect of saving and gambling, may help 

encourage greater savings among low-income individuals.  This thesis explores how two 

leading theories of gambling behavior, subjective probability and indivisible goods, 

inform the prize structure that maximizes the appeal of PLS programs to the targeted low-

income individuals.   

I find that the design of PLS programs that maximizes their attractiveness depends 

largely upon the assumed theory of gambling behavior.  Under subjective probability, a 

―winner take all‖ prize structure is favored, while under indivisible goods, a prize 

structure with more modest sizes that still allow indivisible goods consumption is 

favored.  I also consider a model where one portion of the population is assumed to 

follow subjective probability while the other portion indivisible goods.  The trade-off 

between the two theories suggests that when one accounts for 60% of gambling behavior 

preferences, this theory dominates the prize structure.  My results underscore the need for 

more empirical research to determine the gambling behavior preferences of the 

population given that the effectiveness of PLS programs depends mainly on the assumed 

theory underlying gambling behavior.   
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1 Introduction 

According to many policy makers, low-income households in the U.S. do not save 

enough.  The Corporation for Enterprise Development reports that 43.1% of American 

households—some 127.5 million people—are ―liquid asset poor‖.  Liquid asset poor is 

defined as lacking the sufficient amount of liquid assets to subsist at the poverty level for 

three months in the absence of income.
1
  This figure suggests that nearly half of all 

Americans are one emergency away from being able to finance basic expenditures such 

as food in the near future.  Furthermore, a number of economists assert that the lack of 

savings behavior is especially pronounced in the low-income demographic.  A study 

using the Consumer Expenditure Survey found that the savings rate is roughly -23% 

among the lowest income quintile in comparison to 46% among the highest income 

quintile (Dynan et al., 2000, p. 21).  As a result of this savings behavior, Duflo et al. 

(2006) suggest that a significant portion of Americans at this income bracket do not set 

aside enough money for retirement.  These authors cite that households with annual 

incomes below $40,000 are unlikely to allocate money toward retirement accounts 

(IRAs), rarely have employer-provided pensions, and in 2001 had a median net financial 

wealth of $2,200 outside of retirement accounts (Duflo, 2007, p. 647).   

In response, policy makers have attempted to increase the savings rate among 

low-income individuals through various incentives.   Bronchetti et al. (2011) examine the 

impact of an opt-out savings program where low-income tax filers by default receive a 

portion of their tax refund in the form of U.S. Savings Bonds.  Despite these efforts, the 

                                                      
1
 Source: http://scorecard.assetsandopportunity.org/2012/measure/liquid-asset-poverty-rate 
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savings rate among the low-income demographic continues to be low, especially relative 

to higher income individuals.   

In addition to the low rate of savings among the low-income demographic, and 

perhaps even contributing to the issue, is the popularity of gambling among individuals in 

this income bracket.  Data show that while low-income individuals tend to save a lower 

proportion of their income than the population as a whole, they also tend to gamble a 

higher proportion of their income.
2
  Given that traditional savings instruments and pro-

savings government policies have not incentivized less wealthy individuals to save 

enough, but that gambling seems so appealing, one potential solution is Prize-Linked 

Savings programs.  My thesis focuses on how to design Prize-Linked Savings programs 

to maximize the expected utility from participation and, thus, maximize their 

attractiveness.  I define this design as the ―optimal design‖. 

Prize-Linked Savings (PLS) programs are a hybrid between a savings account and 

a lottery that are targeted toward the low-income gambling demographic who usually do 

not save.  In a typical program, the participants first deposit money in an account just as 

they would with a standard savings account. They then forgo the interest they would have 

received in exchange for a stake in a lottery.  All of the foregone interest among 

participants is compiled, and paid out in larger sums as part of a prize structure.  The 

prize structure, or design of the program, can vary in the number of prizes, the probability 

of prizes, and the size of prizes.  Intuitively, these programs expand the utility of low-

income individuals because the gambling component makes saving more attractive, and 

offers a higher utility than a regular savings instrument.  The exact extent of this utility 

                                                      
2
 Source: http://lottoreport.com/demostudy2005.htm 
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gain, however, depends upon the design of the program.  This paper studies the optimal 

design of a PLS program that maximizes the program’s attractiveness to low-income 

individuals under differing theories explaining the gambling behavior of such individuals. 

PLS programs have been in existence since 1694 (Kearney et al., 2010, p. 7), and 

despite being currently outlawed in the U.S., have a large international appeal.  Examples 

of successful programs range from countries such as Mexico and Columbia to Pakistan 

and Japan.  In the U.K., government-sponsored Premium Bonds have been a popular PLS 

program since the 1950’s.  This program, with an estimated 40% participation rate among 

British households, now draws investments of over £40 billion and offers annual jackpots 

of over £1 million (Kearney et al., 2000, p. 10).  In South Africa, the First National Bank 

introduced the Million a Month Account (MaMA) in 2005.  This example, a privately-

owned PLS program as opposed to Premium Bonds, offered monthly drawings of 1 

million rand (Kearney et al., 2000, p. 12).  Despite only running for 3 years, and facing 

government opposition, MaMA managed to open accounts for over 1% of the unbanked 

in South Africa (Kearney et al., 2000, p. 13).  This is but one example of a PLS program 

that found high demand from customers who had not saved previously. 

Part of the reason that PLS programs have been so successful, especially among 

low-income households, is the demand for gambling products. Traditional expected 

utility theory would predict that low-income individuals are less likely to gamble than 

high-income individuals.  Due to the generally accepted principles of diminishing 

marginal utility of wealth and decreasing relative risk aversion, a given gamble would be 

more appealing to a wealthier individual than a poorer individual.  Nevertheless, 

empirical lottery data from around the country suggest that the opposite is true.  For 
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example, in a study conducted in Texas in 2005, it was found that those earning under 

$20,000 spend .380% of their income on the lottery while those making between 

$76,000-$100,000 spend .034%.
3
  In practice, then, it appears that the poor display less 

risk aversion than the wealthy when it comes to lottery consumption.  Kearney (2004) 

demonstrates that with the introduction of a state lottery with instant games (―scratch 

tickets‖), low-income households within that state reduce expenditures on necessary non-

gambling products by 3.1% (Kearney, 2005, p. 2271).  These products include food and 

clothing as well as home mortgage, rent, and other bills.  This tendency to shift 

consumption away from necessary goods towards gambling is especially pronounced 

given that the average scratch ticket is not an actuarially fair gamble and pays out only 

$0.52 on every dollar (Kearney et al., 2000, p. 4). 

In order to understand the appeal of PLS, which lies in the gambling component 

of the programs, it is necessary to examine various theories explaining gambling behavior 

among low-income individuals. Two of the leading theories in gambling behavior are 

subjective probability weighting and indivisible goods.  Under the assumption that 

gambling behavior is explained by these theories, I ask: how do subjective probability 

weighting and indivisible goods inform the optimal design of PLS programs?  Previous 

studies have only examined these questions under one gambling behavior theory.  This 

paper expands upon the literature by considering the combination of competing gambling 

behavior theories to simulate heterogeneous gambling behavior preferences in the general 

population. 

                                                      
3
 Source: http://www.txlottery.org/export/sites/lottery/Documents/demographicreport2004.pdf 
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I find the optimal design of a PLS program under subjective probability favors a 

low-probability ―winner take all‖ jackpot while allocating a negligible amount of the 

prize pool to the other prizes.  The optimal design under indivisible goods, however, 

involves several prizes of more modest sizes still large enough to purchase different 

indivisible goods.  When I combine both theories, the trade-off between the two is such 

that if I assume that one theory accounts for 60% of the gambling behavior preferences in 

the population, this theory dominates the prize structure.  Given the large effect of the 

assumed gambling behavior theory on the optimal PLS prize structure, this thesis 

underscores the need for empirical research to determine the theory underlying gambling 

behavior in the general population.  

 

 

2 Theories on Gambling Behavior 

Previous studies on the optimal design of PLS programs focus only around 

prospect theory.  Given that there are many more models of gambling behavior, and 

consumer preferences likely do not follow one theory alone, this thesis expands upon the 

existing literature by combining two leading theories of gambling behavior.  Then, this 

thesis examines how the conclusions about the optimal design of PLS programs differ 

from previous models. 

The leading theories of gambling behavior can be separated into two classes: the 

psychological and behavioral theories, and the alternative utility function theories.  

Several authors have attempted to explain gambling behavior through the psychological 

motivations underlying lottery purchase behavior.  Thiel (1991) proposed that a lottery 

ticket is comprised of two bundled goods where the first good is the ticket itself and the 
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second good, considered to be fantasy or hope, entices people to participate in what 

would normally not be a rational gamble.  While this field of study provides a good start 

in explaining low-income gambling, it lacks a strong empirical foundation.  Given that 

the psychological theories are difficult to quantify, they are also difficult to incorporate 

into empirically verifiable models. 

 Tversky and Kahneman (1979) provide an alternative behavioral explanation for 

low-income gambling with their work on prospect theory and subjective probability.  By 

offering a series of wagers to participants, these authors find that people’s revealed 

preferences seem to contradict expected utility theory.  Using the data they collected, 

Tversky and Kahneman rationalize this behavior using the notion of subjective 

probability weighting.  Subjective probability weighting supposes that there is a nonlinear 

function, (p), which translates objective probabilities, p, into subjective decision 

weights.  This function is found to be S-shaped, and can be seen below: 

      Figure 2.1 

 
       Source: Tverskey and Kahneman (1979) 

 

Under subjective probability weighting, low probabilities are weighted upward while 

high probabilities are weighted downward.  With respect to lotteries, the relevant part of 

the decision weighting function is the leftmost portion.  When individuals overestimate 
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their odds of winning low-probability lotteries, they also overestimate the expected return 

of each gamble they make.  This leads to more gambling than what is objectively 

rational.  Tversky and Kahneman, then, are able to provide an explanation for why many 

individuals exhibit high levels of lottery consumption.   

 A second class of explanations rationalizing gambling behavior is based upon 

kinks in the utility curve.  While Friedman and Savage (1948) were the first to introduce 

an alternative utility function to the traditional model, Yew-Kwang Ng (1965) expanded 

upon this idea by introducing borrowing constraints and indivisible goods.  Indivisible 

goods are those that may only be purchased discretely, such as a car or house.  Ng 

explores a model where one good, college education, is indivisible while all other goods 

are perfectly divisible.  Due to imperfect capital markets, low-income individuals cannot 

take out the loans necessary to purchase these indivisible goods.  As a result, although the 

marginal utility of consumption is diminishing, there is a kink in the utility function at the 

point where the indivisible good is consumed: 

   Figure 2.2 

 
Source: Crossley et al. (2011) 

 

In Figure 2.2, x2 is disposable income, V2(x2) is the utility function, d = {0,1} is the 

purchase of the indivisible good, and  ̅ is the level of income at which this purchase can 
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be made.  Due to the convex kink in the utility function at  ̅, individuals gamble for the 

opportunity to purchase the indivisible good and move from the first to the second 

portion of the utility curve. 

In this paper, I focus on subjective probability and indivisible goods theories.  I do 

not assert that subjective probability and indivisible goods explain why all gambling 

occurs, but rather that they provide a foundation for understanding this behavior. My 

work uses both of these theories to inform the optimal design of PLS programs.  Given 

that existing literature has focused on incorporating one theory into this design, this paper 

expands upon previous studies by considering both subjective probability and indivisible 

goods, and determining how the subsequent optimal PLS prize structure differs when 

balancing the two theories. 

 

 

3 The Model 

I present a model that examines how subjective probability and indivisible goods 

theories of gambling behavior inform the optimal design of PLS programs.  The design 

depends on three factors: the size of the prizes, the probability distribution of the prizes, 

and the number of prizes.  The model focuses solely upon the size of the prizes, rather 

than the other two factors, as it is computationally taxing to solve for more than one 

factor at a time.
4,5

  The design problem in this paper focuses on choosing the size of the 

prizes for a given 5-prize lottery with exogenously assigned probabilities.  The assumed 

probabilities are derived from scratch card data (see appendix), and can be seen below: 

                                                      
4
 Mathematica had difficulty solving for the size of the prizes and the prize probabilities 

simultaneously. 
5
 Section 5 relaxes some of these assumptions to test whether they are robust. 
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Table 3.1 

 

Prize Probability 

q1 p1 = 1/600,000.00 

q2 p2 = 1/40,000.00 

q3 p3  = 1/1,481.40 

q4 p4  = 1/30.84 

q5 p5 = 1/5.20 

0 (no prize) p6 = 1/1.30 

 

Section 3.1 examines the optimal design under the assumption that consumer preferences 

follow subjective probability. Section 3.2 examines the design under the assumption that 

preferences follow indivisible goods.  Finally, Section 3.3 combines the two models. 

 

3.1 Subjective Probability 
 

I follow Pfiffelmann (2007) in my model of the optimal design of a 5-prize PLS 

program for consumers whose gambling behavior is explained by subjective probability. 

These consumers map objective probabilities into subjective probabilities, and for this 

reason, have preferences for prizes with certain probabilities.  Given that small 

probabilities are overweighted, consumers who follow prospect theory favor an allocation 

of the majority of the prize pool to the lowest-probability prize.  While the model also 

incorporates some aspects of prospect theory in order to remain consistent with the 

comprehensive theory presented by Tversky and Kahneman, what is relevant in 

rationalizing gambling theory is subjective probability.   

Given a particular lottery with a set of payoffs, an individual perceives this joint 

set of probabilities as a prospect, X.  Prospect X can be defined as: 

 X = ((xi,pi)i = -m,…n) (1) 

 

with x-m < x-m+1 < … < x0 = 0 < x1 < x2 < … < xn 
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In equation 1, xi is equal to the payout of each prize, and pi is equal to the probability of 

that payout occurring.  Each pair (xi,pi) is one outcome of the prospect.  Within this 

prospect, people perceive two different types of outcomes.  Certain payouts are 

considered gains, xn > 0, while others are considered losses, x-m < 0, relative to a 

reference point, rf.  This reference point corresponds to the return that one expects to 

receive, such as the return on a standard savings account or low-risk investment.  Due to 

risk aversion, the valuation of gains and losses is asymmetric, with separate value 

functions for each outcome.  For example, the positive value derived from a gain of $100 

would be smaller in magnitude than the negative value derived from a loss of $100.  The 

subjective probability weighting, as well, depends on whether the prize is a gain or a loss.  

The value of a prospect is comprised of two components due to the asymmetric 

valuation of gains and losses.  I define Usp(X
+
) as the sum of the value from all gains, 

Usp(X
-
) as the sum of the value of all losses, and Usp(X) as the value of the prospect:  

 

 Usp(X) = Usp(X+) + Usp(X-) (2) 

 

 

In this equation, X
+
 represents all xn > 0 and X

- 
represents all x-m < 0.  Both Usp(X

+
) and 

Usp(X
-
) can then be expanded as a subjective expected value of the event occurring, πi, 

multiplied by the value of the prize measured by the value function, v(xi).  πi maps 

objective probabilities to their subjective values, and v(xi) accounts for diminishing 

marginal returns and loss aversion.  As both of these functions differ by the type of 

outcome, a positive superscript indicates that the function is used to evaluate gains, while 

a negative superscript is used for losses.  The expected value of Usp(X
+
) and Usp(X

-
), 

respectively, becomes: 
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v(xi) is a strictly increasing function that is defined relative to the point v(0) = 0.   

  For both value functions, v
+
(xn) and v

-
(x-m), Tversky and Kahneman suggest the 

following functional form: 

 v+(xn) = xn
 

(5) 

 

 v-(x-m) = -(x-m) 
(6) 

 

For 0 <  < 1 and 0 <  < 1, the value function is convex over gains, and convex over 

losses.  The level of loss aversion in v
-
(x-m), creating the different weighting of gains and 

losses, is measured by the parameter .  Based off experimentation, the authors estimate 

the parameter values to be  =  = 0.88 and  = 2.25. 

 The weighting functions, πn
+
 and π-m

-
, are defined by Tversky and Kahneman to 

cumulatively weigh all of the probabilities of a given prospect.  As such, the functions are 

defined as follows: 

  n+ = w+(pn) = w+[pi + … + pn] – w+[pi+1 + … +pn] with 0 ≤ i ≤ n-1 (7) 

 

  -m- = w-(p-m) = w-[p-m + … + pi] – w-[p-m + … +pi-1] with –m ≤ i ≤ 0 (8) 

 

 

Through experimentation, Tversky and Kahneman propose the functional form below for 

the functions w
+
(pn) and w

-
(p-m): 

                                                     w
+
[pn] = 

   

         )  )    
                                              (9) 

 

    w
-
[p-m] = 

   

         )  )    
                               (10) 



12 

 

 

For   < 1, this functional form leads to an s-shaped weighing of objective probabilities 

where low-probability events are overweighted and high-probability events are 

underweighted.  This indicates that the marginal changes in subjective probability 

weighting are not constant and that more weighting occurs at high and low objective 

probabilities.  The values of  
+ 

and  
- 
account for different levels of subjective probability 

weighting for gains and losses.  Tversky and Kahneman estimate  
+
 = .61 and  

-
 = .69. 

 Given the weighting functions and the value functions, I now present the lottery 

and maximization problem underlying design.  In this model, the agent is first faced with 

the decision of whether or not to participate in the PLS program, L = {0,1}, given the 5-

prize prize structure above.  This decision will depend upon the attractiveness of the prize 

structure and the expected utility from participation.  The size of the deposit necessary to 

participate in the PLS program is equal to g, while the reference point of return is equal to 

rf.  The expected payout of the prize structure then is rf*g, assuming the payout is 

actuarially fair, and prizes are perceived as gains or losses relative to this value.  

Therefore, all payouts greater than rf*g will be measured by the value function v
+
(xn), 

while those less than rf*g will be measured by the value function v
-
(x-m). 

 To design the program, it is necessary to define which prizes are gains and which 

are losses.  Ideally, the model itself would solve this problem such that the optimal value 

of each prize, q, would determine whether it is a gain or loss.  Due to the fact that this 

creates a non-smooth objective function, however, the maximization becomes 

computationally taxing if gains and losses are not determined exogenously.  Therefore, 

based upon scratch ticket data, I have chosen the first four prizes, q1, q2, q3, and q4, to be 

gains, and the last, q5, a loss (see appendix). Optimal PLS structure is the one that 
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maximizes the expected utility from participation using the subjective probability 

weighting and value functions.  The maximization problem becomes:   

  ximiz   ,  ,  ,  ,        )    ∑   
 ) 

  x ) + ∑   
 
)   x )

 

   

 

   

 

  =  (w-[p6]) * v-[- rf * g] + 

     (w-[p6 + p5] - w-[p6]) * v-[q5 - rf * g] + 

       (w+[p1 + p2 + p3 + p4] – w+[p1 + p2 + p3]) * v+[q4 - rf * g] + 

       (w+[p1 + p2 + p3] – w+[p1 + p2]) * v+[q3 - rf * g] + 

       (w+[p1 + p2] – w+[p1]) * v+[q2 - rf * g] + 

       (w+[p1] ) * v+[q1 - rf * g] 

  subject to: 

   q1 * p1 + q2 * p2 + q3 * p3 + q4 * p4 + q5 * p5 = rf  * g 

   q1 – rf * g ≥ 0, q2 – rf * g ≥ 0, q3 – rf * g ≥ 0, q4 – rf  * g ≥ 0, q5 ≥ 0 

The first constraint specifies the expected payout of the program, while the second 

constraint guarantees that all of the winning prizes offer a return greater than the 

reference point, rf.  The values for rf = 0.31 and g = 160 were calibrated using current 

market data and existing PLS program data (see appendix).  In addition, it is assumed that 

there are n = 600,000 participants so that q1 is paid out once (see appendix).  The 

resulting values for q1, q2, q3, q4, and q5 determine the optimal PLS prize structure that 

maximizes the expected value from participation under subjective probability. 

 

3.2 Indivisible Goods 

 
I adopt Crossley et al. (2011) in my model of the optimal design of a 5-prize PLS 

program under the assumption that consumers follow indivisible goods theory.  Given 
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that Crossley et al. focus solely upon the size of the income effects for low-income 

individuals who play the lottery, my model extends the theory to a utility maximization 

problem to design PLS programs.  This model incorporates the idea that consumer 

preferences are represented by a utility function with kinks at each point where an 

indivisible good can be purchased.  These consumers have a preference for prizes that are 

large enough to allow them to purchase additional indivisible goods.  As a result, 

consumers who follow indivisible goods theory are more interested in multiple modest 

prizes that allow indivisible goods consumption rather than one large jackpot. 

Within this model, there are two types of goods: divisible goods, x1, and 

indivisible goods, x2.  Divisible goods are defined as food, clothing, and other goods 

purchased in divisible amounts.  Given that these goods are necessary to survival, they 

are consumed by all individuals.  Indivisible goods, alternatively, are goods that can only 

be consumed discretely.  These are more expensive goods that are not available to all 

individuals.  While there is a large array of indivisible goods, the ones included in this 

model are a car, a home, and a college education such that x2 = {0, 1, 2, 3}(see 

appendix).  The price of these goods, c(x2) = {0, c1, c2, c3}, and the utility from these 

goods, d(x2) = {0, d1, d2, d3} (see appendix), are represented by the following parameters: 

Table 3.2 

 

 Utility Parameter Price ($) 

No Indivisible Goods (x2 = 0) 0 0 

Car (x2 = 1) d1 = 35 c1 = 13,105 

Car + Home (x2 = 2) d2 = 45 c2 = 33,518 

Car + Home + College (x2 = 3) d3 = 55 c3 = 48,532 

 

For the purpose of this model, the consumers of the PLS program are modeled as 

a representative agent.  The agent is assumed to be the average lottery consumer with 
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regard to socioeconomic background and indivisible goods owned.  For this model, the 

representative agent has an annual income after taxes, y0, of $30,000, does not have 

access to credit markets, and does not own a car, home, or have a college education (see 

appendix).  In addition, it is assumed that the representative agent sets aside a certain 

level of income, z0, toward x1 to purchase food, clothing, and other items of sustenance.  

This level of sustenance is utilized for the sake of calculating disposable income, h0, and 

is equal to y0 – z0.  For this model, z0 = $23,000 such that h0 = $7,000 (see appendix).   

In the first stage of this two-stage model, the agent is faced with the decision of 

whether or not to participate in the PLS program, L = {0,1}, given the prize structure.  In 

the second stage, the outcome of the lottery is realized, and the agent decides how to 

allocate income in the second stage, y1, between divisible and indivisible goods.  The 

utility of the representative agent, Uig(x1,x2), is represented by a Cobb-Douglas utility 

function: 

 Uig(x1,x2) = x1
 * (w(x2))ε 

(11) 
 

 

where w(x2) = {

i  x   ,           , 00
i  x   ,         ,  0

i  x   ,         , 00
 

 

In this equation, x1 defines the amount of divisible goods consumed, w(x2) defines 

the value of each level of indivisible goods where w(0) = 0 (see appendix), and  and ε 

are weighting parameters. This utility function incorporates the two-good model where 

the representative agent allocates money between divisible goods and indivisible goods.  

While x1 can be purchased in small quantities at a price P1, x2 may only be purchased 

discretely at price c(x2). In this model, the values chosen for the weighting parameters,  

and ε, are 0.6 and 0.4, respectively (see appendix). 
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 In order to solve the maximization problem to determine the optimal PLS 

structure for indivisible goods, this model uses an indirect utility function rather than the 

direct utility function presented above.  Following the work on the two-stage budgeting 

process (Strotz, 1957; Gorman, 1959), the agent faces an analogous situation in 

budgeting between x1 and x2.  It is assumed that the agent first allocates income between 

these two types of goods.  Afterward, the agent allocates within each type of good, or in 

the case of x2, which indivisible goods to purchase.  For this reason, this model lends 

itself more naturally to an indirect utility function that can be derived from Equation (11). 

 Solving the direct utility function for the optimal level of allocation between x1 

and x2 (see appendix) yields the following indirect utility function: 

 Vig(y1) = ln(y1- c[h1]) + a[h1] (12) 

 

where 

a[h ] = {

i    < h ≤   ,      (  +     
 )

i    < h ≤   ,      (  +     
 )

i    < h ,                (  +     
 )

            c[h ] = {

i    < h ≤   ,      
i    < h ≤   ,      
i    < h ,                

 

 

y1 is income and h1 is disposable after the PLS lottery is realized where h1 = y1 – z0.  a[h1] 

and c[h1] are the indirect utility and cost functions for indivisible goods, respectively, 

where a[0] = c[0] = 0.  b = 11.9 and e = 11.9 are utility coefficients. 

The intuition behind these specifications is that once the disposable income of the 

agent is high enough, the utility gain from purchasing the indivisible good outweighs the 

utility gain from only consuming divisible goods.  For example, it is desirable to purchase 

a car when c1 < h1 ≤ c2, but not when h1 < c1.  The agent, then, faces diminishing 



17 

 

marginal returns with regard to divisible goods, but has kinks in the indirect utility 

function at each level of income where an indivisible good is purchased.   

The optimal PLS structure under indivisible goods maximizes the attractiveness 

of the program.  This is accomplished by maximizing the expected value of participation: 

   ximiz   ,  ,  ,  ,        )  ∑p   n y + q   [h + q ]) +   [h + q ])

 

   

 

 
                     =   p1(ln(y0 + q1 - c[h0 + q1]) + a[h0 + q1]) + 

p2(ln(y0 + q2 - c[h0 + q2]) + a[h0 + q2]) + 

p3(ln(y0 + q3 - c[h0 + q3]) + a[h0 + q3]) + 

p4(ln(y0 + q4 - c[h0 + q4]) + a[h0 + q4]) + 

p5(ln(y0 + q5 - c[h0 + q5]) + a[h0 + q5]) + 

     p6(ln(y0 - c[h0]) + a[h0]) 

 subject to: 

  q1 * p1 + q2 * p2 + q3 * p3 + q4 * p4 + q5 * p5 = rf  * g 

  q1  ≥  0, q2  ≥  0, q3  ≥  0, q4  ≥  0, q5  ≥  0 

The constraints specify the expected payout of the program and that no prize may be 

negative.  Each value of y1 represents the level of income reached depending upon which 

prize is won.  For instance, if q2 is won with probability p2, y1 = y0 + q2.  The same 

intuition follows for each value of h1.  

 

3.3 Combined Model 
 

Under the assumption that the optimal design of the 5-prize PLS structure is 

informed by both subjective probability and indivisible goods, the model incorporates the 
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idea that the agent values how the prize pool is allocated based off the probability as well 

as the size of the prizes. The preferences of the agent are represented by the parameter 0 

<  < 1 where the subjective probability and indivisible goods models are valued with 

weight  and (1-), respectively.  This model may be interpreted as representing the 

gambling behavior preferences of the population as a whole.  Changing the value of  

presents a variety of scenarios where different proportions favor subjective probability or 

indivisible goods.  For this model, the maximization problem becomes: 

Maximizeq1,q2,q3,q4,q5 E(Ucm) =  E(Usp) + (1- ) E(Vig) 

  subject to: 

   q1 * p1 + q2 * p2 + q3 * p3 + q4 * p4 + q5 * p5 = rf  * g 

   q1 – rf * g ≥ 0, q2 – rf * g ≥ 0, q3 – rf * g ≥ 0, q4 – rf  * g ≥ 0, q5 ≥ 0 

The second constraint specifies that q1, q2, q3, and q4 are gains to account for the 

subjective probability portion of the maximization.  It is worth noting that this constraint 

was not in place with just the indivisible goods model, but it is necessary when the two 

models are combined.  In addition, the parameters b and e from the indivisible goods 

model were calibrated so that, for each model’s respective optimal prize structure, the 

expected utility from participation is equal.  By allowing the base case for each model to 

provide the same expected utility, this minimizes the extent to which either theory 

dominates the combined model due to differences in the two utility functions. With this 

specification, the resulting values of q1, q2, q3, q4, and q5 represent the prize structure for 

the PLS program that maximizes the program’s attractiveness where preferences are split 

between subjective probability and indivisible goods.  
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4  Results 

This thesis presents the optimal design of PLS programs under several gambling 

behavior theories given the constraints of the payout.  The results demonstrate that the 

assumed gambling behavior theory has a large impact upon the optimal prize structure.  

Under subjective probability, a ―winner take all‖ prize structure is favored with little 

allocation toward the other prizes.  Under indivisible goods, however, a prize structure 

with more modest prize sizes is favored to allow additional indivisible goods to be 

consumed.  When the population’s preferences are split between the two theories, the 

trade-off is such that either subjective probability or indivisible goods dominates the prize 

structure with a 60% weighting. 

 

4.1 Subjective Probability Results 
 

Under the assumption that gambling behavior is completely informed by 

subjective probability, the following prize structure presents the optimal PLS design: 

Table 4.1 

 

 q1 q2 q3 q4 q5 

Size ($) 2,875,830 113 5 5 0 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 96.63% 0.06% 0.07% 3.24% 0% 

 

―Size‖ is the size of the prize, ―Tickets‖ is the number of winning tickets for the prize, 

and ―% Prize Pool‖ is the percentage of the prize pool allocated toward this prize.  The 

prize structure above is asymmetric in that almost the entire prize pool is allocated to q1, 

96.63%, in a ―winner take all‖ system, while the remaining prizes receive little allocation.  

These results are explained by differences between the probabilities in the constraint 

function and the perceived probabilities in the objective function; even though the 
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primary constraint of the expected payoff of the program (equal to rf*g) is defined with 

objective probabilities, the weight that households place upon each outcome of the PLS 

lottery is based upon subjective probabilities.  For example, the perceived chance of 

losing, 6 = 58.687%, is less than the actual chance of losing, p6 = 77.457%, while the 

perceived chance of winning q2, 2  = .155%,  is greater than the actual chance of winning 

the q2, p2 = .003%. To maximize E(Usp) while maintaining an expected payout of rf, the 

optimal prize structure exploits disparities between objective and subjective probabilities.  

Since the agent inaccurately perceives that the lottery offers a higher expected return by 

shifting resources from higher to lower probability prizes, the majority of the prize pool 

is placed in q1 while the remaining prizes offer approximately the minimum return under 

the constraints.  Therefore, under subjective probability theory, the agent prefers a 

―winner take all‖ prize structure. 

 

4.2 Indivisible Goods Results 
 

 Assuming that gambling behavior is completely informed by indivisible goods, 

the optimal PLS prize structure becomes: 

Table 4.2 

 

 q1 q2 q3 q4 q5 

Size ($) 41,699 26,669 6,257 0 0 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 1.40% 13.44% 85.16% 0% 0% 

 

In this scenario, the prize structure is different than what we find under subjective 

probability theory.  Under indivisible goods, the agent prefers more modestly sized prizes 

that allow additional indivisible goods to be consumed.   This preference is split between 

the level of indivisible goods consumption made possible with the prize (car vs car and 
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home), and the number of winning tickets for the prize allowing some indivisible goods 

consumption.  I define these two preferences ―quality and quantity‖ of indivisible goods 

consumption.  There is a natural tradeoff between quality and quantity because as money 

is allocated to prizes allowing a higher quality of indivisible goods to be consumed, there 

will be a lower quantity of tickets allowing some indivisible goods consumption. This is a 

choice between locking-in a higher probability of reaching a lower kink in the indirect 

utility function, or gambling for the chance to reach a higher kink.  For instance, the prize 

structure above offers prizes that allow 405 cars, 15 cars and homes, and 1 car, home, and 

college education to be consumed with q3, q2, and q1, respectively.  Instead, the prize 

structure could offer 16 tickets to consume all three indivisible goods between q1 and q2, 

while 0 tickets to consume just the car or car and home.  Balancing quality and quantity 

of indivisible goods consumption is an empirical question that depends on the 

probabilities of the prizes, the size of the prize pool, and the marginal utility of each kink. 

Under the preference of indivisible goods, instead of allocating a large portion of 

the prize pool toward q1, this prize is only slightly more than the minimum amount 

necessary to purchase the car, the home, and a college education.  Given that h0 = $7,000, 

and that all three combined goods cost $48,532, a $41,532 prize is necessary to make this 

purchase feasible.  Intuitively it makes sense that this prize is not much larger than 

$41,532 because after this kink in the utility function, additional prize money won from 

this prize is allocated to divisible goods and subject to diminishing marginal returns in 

utility.  

The second prize, q2 = $26,669, allows 15 cars and homes to be consumed.  By 

limiting the size of q2, it is possible for q3 = $6,257 to be large enough for 405 cars to be 
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consumed.  Each of the top three prizes, then, allows the consumer to be on a different 

portion of the indirect utility function.  Under the current parameters, the preference for 

the quantity of indivisible goods consumption is greater than the preference for quality.  

The remaining prize pool is distributed between q4, and q5.  The allocation to 

these prizes is negligible.  The majority of the prize pool is divided among q1, q2 and q3. 

This underscores the idea that under indivisible goods theory, the agent is interested in 

several prizes that allow indivisible goods to be consumed.  Therefore, an agent under 

indivisible goods has a preference for more modest prizes than the ―winner take all‖ 

system under subjective probability. 

 

4.3 Combined Model Results 
 

 Under the assumption that both subjective probability and indivisible goods factor 

into gambling behavior, the optimal PLS design is informed by both theories.  This model 

more realistically reflects the real world scenario where some people gamble due to 

subjective probability, while others due to indivisible goods.  A person who prefers 

subjective probability will derive less utility from the optimal indivisible goods design, 

while a person who prefers indivisible goods will derive less utility from the optimal 

subjective probability design.  This idea is presented in the table below: 

Table 4.3 

 E(Usp) E(Vig) 

Optimal SP 135.1 11.0 

Optimal IG 26.6 135.1 

 

―Optimal SP‖ indicates that the prize structure in Table 4.1 was plugged into each utility 

function, while ―Optimal IG‖ indicates the prize structure in Table 4.2 was used.  While 

both the indivisible goods agent and the subjective probability agent have the same 
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expected utility for their corresponding optimal prize structures, E(Usp)  =  E(Vig) = 

135.1, both agents have much lower expected utility for the opposite optimal prize 

structure.  As a result, to design a program that considers both theories, the prize structure 

must find a compromise. 

The resulting prize structure ultimately depends upon ρ, the weighting of the two 

theories. While it is difficult to estimate this parameter precisely, it is possible to contrast 

how the optimal PLS structure varies depending on different assumptions about the 

population’s preferences for gambling behavior.  Presented below in Figure 4.1 are 

scenarios ranging from a heavy weighting of subjective probability to a heavy weighting 

of indivisible goods: 

Figure 4.1 

 
Depending on the value of ρ, the prize structure more closely resembles that of 

subjective probability or indivisible goods.  The area of each slice represents the 

percentage of the prize pool that is allocated toward each prize, while the label denotes 

the size of the prize.  For example, for ρ = 0.40, q3 =$6,105 makes up approximately 83% 

of the prize pool with the 405 tickets paid out for this prize. This figure shows the trade-
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off between preferences for one large prize in comparison several prizes that allow the 

consumption of indivisible goods. 

When ρ = 0.1, the prize structure is qualitatively similar to the indivisible goods 

prize structure. The majority of the prize pool is allocated to q2 = $26,518 and q3 = 

$6,105 to allow the consumption of 15 cars and homes and 405 cars, respectively.  The 

main difference between the two scenarios is that in the combined model, the constraint 

on q4 as a gain shifts allocation away from q1 to q4.   As a result, q1 = $9,052 only allows 

the car to be consumed.  Due to the fact that the payout to this prize is now so small, it 

does not show up in Figure 4.1.  The smaller allocation to q1, rather than q2 or q3, 

demonstrates the preference for quantity of indivisible goods over quality.  In the ρ = 0.4 

scenario, the stronger preference for subjective probability leads to a larger allocation to 

q1 = $315,247 away from q2.   As a result, q2 is only large enough to allow the car to be 

consumed.   Nevertheless, q2 and q3 still account for the majority of the prize pool, 

indicating that the effect of indivisible goods dominates.   

In the ρ = 0.6 scenario, the prize structure more closely resembles the ρ = 1 case.  

With a larger preference for subjective probability, q1 = $2,785,950 accounts for almost 

94% of the prize pool.   This follows from the preference under subjective probability for 

a ―winner take all‖ prize structure.  Due to the 40% preference for indivisible goods, the 

allocation to q1 is limited such that q2 = $6,105 is large enough to purchase the car.  

When the weighting for subjective probability increases to ρ = 0.9, however, no 

indivisible goods may be purchased with q2 and q3.  The resulting prize structure is 

identical to when ρ = 1.   
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To demonstrate the trade-off between the two theories, the expected utility of 

each agent from participation is presented for the four scenarios: 

Table 4.4 

 E(Usp) E(Vig) 

ρ = 0.1 23.7 134.7 

ρ = 0.4 35.9 132.3 

ρ = 0.6 133.9 15.4 

ρ = 0.9 135.1 11.0 

 

The trade-off between a prize structure dominated by subjective probability or indivisible 

goods has a large impact on the expected utility of each type of agent from participation.  

For both agents, a prize structure dominated by the opposite theory creates a discrete fall 

in expected utility.  Interestingly, if ρ = 0.5 and equal shares of the population have 

preferences for subjective probability and indivisible goods, the optimal prize structure is 

identical to the ρ = 0.4 scenario. This suggests that, in deviating from a prize structure 

dominated by each respective theory, the fall in marginal utility for indivisible goods is 

greater than the fall in marginal utility for subjective probability.  This is consistent with 

the fact that E(Vig) = 15.4 for ρ = 0.4 is less than E(Usp) = 35.9 for ρ = 0.6. 

The assumptions concerning the influence of subjective probability and 

indivisible goods theories in gambling behavior have strong implications on the optimal 

PLS design.  When there is a larger weighting for subjective probability, the prize pool 

resembles a ―winner take all‖ system.  When there is a larger weighting for indivisible 

goods, however, there an emphasis on allocation away from the lowest-probability prize 

so that these goods may be consumed.  Thus, by allowing the population to have different 

preferences for the two theories, we see that the resulting prize structure is a compromise, 

but that a 60% preference for either theory dominates the prize structure. 
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5 Robustness 

The quantitative results of Section 4 depend on the calibrated parameters for each 

of the models.  But the main purpose of this thesis is not to give specific predictions, but 

rather to provide a qualitative result of how subjective probability and indivisible goods 

theories inform the optimal design of PLS programs.  In this section, I relax some of the 

assumptions made about the parameters, and assess to see the extent to which my results 

are robust to alternative calibrations. 

 

5.1 Subjective Probability Robustness 

 
 In the subjective probability model, several assumptions are made about the prizes 

as gains and losses and the parameters of the weighting functions that have different 

effects on the results.  Since the choice of prizes as gains and losses determines the 

constraints of the maximization problem, it also has a direct impact on the prize pool 

distribution. The weighting parameters, alternatively, determine the extent to which 

objective probabilities are mapped subjectively.  Given that these parameters are 

important factors in the results of the model, I test the robustness of the original results by 

allowing these parameters to change and re-solving for the optimal prize structure.   

5.1.1 Number of Gains 

 

 I now allow the number of prizes that are gains, with rf*g as a reference point, to 

increase from 4 to 5 prizes and decrease from 4 to 3 prizes.  This considers the possibility 

of a lottery that pays out a different amount of prizes with a higher return than a standard 

savings account or low-risk investment. 

Re-solving for the 5 gains case, the optimal PLS structure becomes: 
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Table 5.1 

5 Gains q1 q2 q3 q4 q5 

Size ($) 2,303,850 91 5 5 5 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 77.41% 0.05% 0.07% 3.24% 19.23% 

 

The additional prize, q5, receives the minimum allocation possible for it to be a gain 

relative to rf*g.  The portion of the prize pool allocated to q5 is taken away from q1, while 

the other prizes remain approximately the same.  Under subjective probability, the 

representative agent still prefers a ―winner take all‖ structure, which explains why q5 is as 

small as possible.  Re-solving instead for the 3 gains scenario, the optimal prize structure 

follows the same intuition (see appendix).  As a result, we can conclude that the 

subjective probability qualitative result does not vary by changing the number of gains 

and losses. 

5.1.2 Weighting Parameters 

 

I now allow γ
+
 = 0.61, the parameter used to measure the weighting of 

probabilities of gains, w
+
(pn), to vary by 0.05.  Given that Tversky and Kahneman 

calculated this parameter, adjusting it accounts for sampling error in their estimates.     

By increasing γ
+
 to γ

+ 
= 0.66, the following prize structure results: 

Table 5.2 

γ
+
 = .66 q1 q2 q3 q4 q5 

Size ($) 2,870,850 453 5 5 0 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 96.46% 0.23% 0.07% 3.24% 0% 

 

Due to the functional form of w
+
(pn), there is an inverse relationship between γ

+
 and the 

subjective weighting of probabilities; when γ
+
 increases, the overweighting of small 

probabilities is lower.  As a result, there is a smaller disparity between subjective and 
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objective probabilities, and it is less attractive to allocate resources to q1.  Nevertheless, 

the prize structure for γ
+
 = .66 provides the same ―winner take all‖ result.  Alternatively, 

if γ
+
 is decreased by 0.05 to γ

+
 = 0.56, the level of subjective probability weighting 

increases such that more of the prize pool is allocated toward q1 (see appendix).   

 While the robustness checks for γ
-
 are not shown, the same intuition holds for this 

parameter. Increasing γ
-
 leads to a smaller underweighting of high probability losses, 

making it more attractive to allocate the prize pool toward these prizes.  The empirical 

differences when adjusting this parameter are small, however, just as with γ
+
.  We 

conclude, then, that the model is robust to modest changes in these weighting parameters. 

 

5.2 Indivisible Goods Robustness 

 
 Key assumptions in the indivisible goods model that affect the optimal PLS 

structure include the number of indivisible goods, the disposable income of the agent, and 

the parameters of the indirect utility function.  The number of indivisible goods impacts 

the tiers of prize sizes the agent desires, disposable income determines the prize sizes 

necessary consume indivisible goods, and the indirect utility function parameters 

determine the preference for the goods.  Several of these assumptions are relaxed and the 

PLS structure is re-solved as a robustness test of the indivisible goods results. 

5.2.1 Number of Kinks 

 

 I now allow for the number of kinks in the indirect utility function, Vig(y1), to 

increase to 4 and decrease to 2.  Allowing the number of kinks to change accounts for the 

possibility that the agent prefers an additional indivisible good (x2 = {0, 1, 2, 3, 4}), or 

the agent only wants the car and home without the college education (x2 = {0, 1, 2}).   

Assuming c4 = $70,000 and d4 = 65, the 4-kink optimal prize structure is: 
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Table 5.3 

4 Kinks q1 q2 q3 q4 q5 

Size ($) 63,101 26,619 6,206 0 0 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 2.12% 13.42% 84.46% 0% 0% 

 

Due to the presence of the fourth indivisible good, q1 increases approximately the 

minimum amount necessary to allow this good to be purchased.  While the shift toward 

q1 leads to a small decrease in the allocation toward q2 and q3, these prizes are still large 

enough to consume the car and car and home, respectively.    

When the number of kinks is instead decreased from 3 to 2, q1 is now only large 

enough to consume the car and home, the most expensive indivisible good (see 

appendix). As a result, the allocation toward q2 and q3 is greater, but the prize structure is 

qualitatively the same.  Therefore, the results found for the indivisible goods model in 

Section 4 are robust to changing the number of kinks in the indirect utility function. 

5.2.2 Disposable Income 

 

 While holding the number of kinks constant, I now allow for the level of 

disposable income to vary by $5,000.  The results that follow for h0 = $12,000 (+$5,000) 

and h0 = $2,000 (-$5,000) are intuitive.  In increasing h0 by $5,000, the size of the prizes 

necessary to purchase each level of indivisible goods are $5,000 smaller, allowing for 

more winning tickets (see appendix).  Given that the extra prize pool is still not large 

enough for q2 or q3 to allow a higher quality indivisible good to be purchased, this money 

is allocated instead toward q4 and q5 instead.  If I allow disposable income to decrease by 

$5,000 to h0 = $2,000, the prize pool is no longer large enough to allocate to q3 the 

amount necessary to purchase a car (see appendix).  Given that there are fewer tickets 

that allow indivisible goods to be purchased, the agent prefers the opportunity to consume 
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higher quality indivisible goods from q1 and q2.  For this reason, both prizes are just large 

enough to consume all three indivisible goods, while the remaining prize pool is allocated 

among q3, q4, and q5.   

5.2.3 Indirect Utility Function Parameters  

 

 I now allow the parameters in the indirect utility function, d(x2), to change in 

order to vary the levels of marginal utility the representative agent derives from each 

indivisible good.  We might expect that an alternative specification would affect the 

trade-off between quality and quantity. While the parameters in Section 4 were defined 

such that the car provided the largest kink in the indirect utility function, I now solve for 

the case where the marginal increase from all three indivisible goods is the largest with d1 

= 15, d2 = 35, and d3 = 55.  This implies a marginal increase in utility approximately eight 

times larger for the car, home, and college education than the car alone, and 

approximately one and a half times larger than the car and home.  In this scenario, the 

prize structure becomes: 

Table 5.4 

Parameters q1 q2 q3 q4 q5 

Size ($) 41,686 26,672 6,256 0 0 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 1.40% 13.44% 85.16% 0% 0% 

 

Despite the alternative specification, the prize structure is still nearly identical to the 

original result.  Instead of allocating more toward q2 to give the maximum opportunity to 

consume all three indivisible goods and gambling on a higher quality of indivisible goods 

consumption, the consumer settles for a higher quantity of indivisible goods 

consumption. Consequently, the results found in Section 4 are robust to alternative 

specifications of the utility parameters. 
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5.3 Combined Model Robustness 

 
 In subjective probability, indivisible goods, and combined models, I made several 

assumptions about the scale of the PLS program, the number of prizes, and the prize 

probabilities.   Given that the scale of the program directly affects the prize pool, and that 

the number of prizes and probabilities are two of the three factors in an optimal design, it 

is important to test the robustness of the results to changes in these parameters.   

5.3.1 Prize Pool Size 

 

I now allow for the cost of participation in the PLS program, g, to vary.  Given 

that the model was based off of a program similar in scale to the Premium Bond program 

in the U.K., this scenario more accurately reflects the current situation in the U.S. where 

PLS programs are limited in scale.  Based off of the Save to Win Program in Michigan, I 

now allow g = $25, the minimum deposit, decreasing the prize pool by more than 5 fold.
6
   

With this new specification, the following prize structures result for the same 

world scenarios from Section 4: 

Figure 5.1 

 

                                                      
6
 Source: http://www.savetowin.org/ 
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With a smaller prize pool, q3 cannot pay out enough to consume an indivisible 

good.  The trade-off between the quality and quantity of indivisible goods consumption is 

affected since a higher quantity of goods is no longer available.  Instead, the prize 

structures presented for different values of  vary in the allocation between q1 and q2.  

Otherwise, however, the results are qualitatively the same.   

It is clear, though, that while the smaller program has the same expected payout, it 

is also less attractive to both types of consumers.  For subjective probability, the 

consumer prefers a larger quantity allocated toward the jackpot.  For indivisible goods, 

the consumer prefers a higher quantity of indivisible goods.  As a result, we can conclude 

that there are returns to scale to having a larger PLS program.  

5.3.2 Number of Prizes 

 

I now allow the number of prizes to vary while holding the size of the prize pool 

fixed.  I maintain the assumption that all but one prize is a gain, and keep the probability 

of each existing prize constant.  An additional prize thus creates more winning tickets, 

while one less prize creates fewer winning tickets.  As a result, the available prize pool 

that can be allocated to the top prize for subjective probability, or to prizes that allow 

indivisible goods consumption for indivisible goods, expands with one less prize, and 

contracts with an additional prize. 

Under a 4-prize prize structure (see appendix), I re-solve for the optimal PLS 

structure and get the same qualitative result (see appendix).  Since it is not necessary to 

allocate a portion of the prize pool to q4, the prize pool expands for the remaining three 

prizes.  Using a 6-prize prize structure (see appendix), I solve again for the optimal PLS 

structure with the first fives prizes as gains and q6 as a loss: 
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Figure 5.2 

 

With q5 as a gain, the prize pool for the remaining prizes contracts.  When  = 0.1 and  

= 0.4, q3 no longer allows the car to be consumed.  As a result, there is a lower quantity, 

but higher quality, of indivisible goods tickets.  When  = 0.6 and  = 0.9, the additional 

prize decreases the allocation to q1, creating less of a ―winner take all‖ system. 

 The optimal prizes structures in Section 4 are robust to the addition or subtraction 

of prizes in the sense that the qualitative results and intuition behind each theory do not 

change.  Allowing the number of prizes to vary does, however, have an impact on the 

number of winning tickets and size of the available prize pool for each prize.  As a result, 

the number of prizes affects the size of the ―winner take all‖ system for subjective 

probability and the trade-off between quantity and quality for indivisible goods. 

5.3.3 Prize Probabilities 

 

 Earlier, I solved for the optimal prize sizes given exogenously assigned prize 

probabilities.  Using the prize sizes from the combined model optimal PLS design results 

in Figure 4.1, I solve the same maximization problem for the prize probabilities given 
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these exogenously assigned prize sizes.  With this specification, the maximization 

becomes: 

Maximizep1,p2,p3,p4,p5 E(Ucm) =  E(Usp) + (1- ) E(Vig) 

  subject to: 

     q1 * p1 + q2 * p2 + q3 * p3 + q4 * p4 + q5 * p5 = rf  * g 

     0 ≤ p1 ≤  , 0 ≤ p2 ≤  , 0 ≤ p3 ≤  , 0 ≤ p4 ≤  , 0 ≤ p5 ≤  , 0 ≤ p6 ≤   

                                p1 + p2 + p3 + p4 + p5 + p6  = 1 

 If this maximization results in probabilities that are qualitatively similar to those 

calibrated for the model, this would suggest that the calibrated probabilities may be 

optimal.  I define qualitatively similar here as a probability structure where the 

probabilities are progressively larger in size from p1 to p5.  Solving the maximization 

problem, we arrive at the following probabilities for the world scenarios from Section 4: 

Table 5.5 

 

 p1 p2 p3 p4 p5 

ρ = 0 0 0 1/1,230.92 0 1/2.23 

ρ = 0.1 0 0 1/1,230.92 0 1/2.23 

ρ = 0.4 0 1/1,596.38 1/5,375.42 0 1/2.61 

ρ = 0.6 1/1,168,216.11 1/2,370.70 0 0 1/2.42 

ρ = 0.9 1/580,592.97 1/26,674.49 1/3,840.69 1/3,840.69 1/2.52 

ρ = 1 1/580,592.97 1/26,674.49 1/3,840.69 1/3,840.69 1/2.52 

 

When subjective probability theory is strongly preferred (ρ=1 and ρ=0.9), the 

probabilities are qualitatively similar to the assumed probabilities from the model.  The 

probability for the largest prize, p1, is the smallest followed by the remaining 

probabilities.  The fact that the prize structure allocates the majority of the prize pool 

toward q1 informs us that the subjective probability agent still prefers a ―winner take all‖ 
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prize structure.  Given that the probabilities are not exactly the same, however, suggests 

that there may be alternative probabilities that make the PLS structure more attractive. 

In the three scenarios where indivisible goods theory is preferred, the optimal 

probabilities for the prize structure are qualitatively different from the assumed 

probabilities in the model.  The probabilities of prizes allowing a higher quality of 

indivisible goods consumption are 0.  The entire prize pool, instead, is allocated to give 

the highest chance possible to consume the car.
7
  Each prize structure pays out 476 

winning tickets rather than 405. The kink in the indirect utility function at the car is large 

enough that the consumer values quantity over quality.  That fact that the solved optimal 

probabilities for indivisible goods are qualitatively different from the calibrated 

probabilities in Section 4 suggests that the original probabilities were not optimal. 

 

5.4 Discussion 

 
 This section demonstrates that the qualitative results from Section 4 are largely 

robust to alternative calibrations of the parameters.  The qualitative results are not robust, 

however, to alternative probabilities of the prizes for indivisible goods.  Given that I 

solve a constrained optimization rather than an unconstrained optimization, the results for 

the optimal PLS structure may be different when the prizes are not assigned exogenously.  

Unfortunately, I cannot relax the assumption of the exogenously assigned probabilities 

due to the computational restrictions of this thesis.  I leave it for future research to 

continue this project and solve the unconstrained optimum for the number of prizes, prize 

sizes, and prize probabilities simultaneously. 

                                                      
7
 For ρ = 0.4, both q2 and q3 allow the car to be consumed.  The sum of p2 and p3 is 1/1,230.92, 

the highest possible probability under the expected payout constraint. 
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6 Conclusion 

 The success of PLS programs internationally in encouraging savings behavior 

among those who did not save previously suggests such programs could be successful 

domestically as well. Although PLS programs are still outlawed throughout the majority 

of the U.S., there has been a movement over the past several years to legalize this 

alternative savings mechanism.  Since 2010, six additional states have joined Michigan 

and passed legislation that legalizes of PLS programs.  Several more states are in the 

process of doing so.
8
   

 Policy surrounding PLS programs should not only focus on their adoption, 

however, but also their design.  This thesis explores the optimal design of PLS programs 

as a means to encourage higher savings behavior.  Specifically, this thesis examines how 

two leading theories of gambling behavior, subjective probability and indivisible goods, 

inform the optimal design of PLS programs to maximize their attractiveness to lower 

income individuals.   While it is beyond the scope of this thesis to determine the 

gambling behavior preferences in the U.S., my findings suggest that the optimal prize 

structure varies drastically depending on the assumed theory of gambling behavior.   This 

thesis underscores the need for more empirical research to determine the gambling 

behavior preferences of the population given that the effectiveness of PLS programs 

hinges upon this question. 

 

 

 

                                                      
8
Source:  http://scorecard.assetsandopportunity.org/2012/measure/prize-linked-savings 
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7 Appendix 

Calibration of prize probabilities and the number of prizes: 

 

I based my exogenously chosen prize probabilities upon the $2 California Triple 

Win scratch ticket for two reasons.  First, the $2 California scratch tickets have a 

qualitatively similar prize structure to the results I expected from my model.  These 

tickets have one prize approximately large enough to purchase an indivisible good and 

probabilities that allow a large allocation toward a ―winner take all‖ prize.  Second, of the 

California scratch tickets, I selected the game with the most tickets under the assumption 

that quantity of tickets supplied is approximately equal to quantity demanded.  High 

demand would indicate that the consumer finds the prize structure to be the most 

attractive.  The $2 California Triple Win prize structure is presented below
9
: 

Table 7.1 

Prize ($) Probability 

20,000 (1) 1/600,000 

1,000 (2) 1/40,000 

200 (3) 1/12,000 

100 (3) 1/1,690 

40 (4) 1/414 

20 (4) 1/100 

10 (4) 1/50 

5 (5) 1/26 

4 (5) 1/13 

2 (5) 1/13 

 

While the California Triple Win has 10 prizes, the prize sizes are naturally 

distributed into 5 groups, indicated in parenthesis.  This assumption follows from the idea 

that scratch ticket consumers have preferences for particular prizes sizes, and do not 

make a distinction between prizes of approximately the same size.  I group the prizes 

                                                      
9
 Source: http://www.calottery.com/play/scratchers-games/$2-scratchers 
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such that the proportion of the largest prize to the smallest prize is minimized.  In Section 

5, I test the robustness of the calibrated 5-prize prize structure by allowing the number of 

prizes to vary. 

To determine the probability of each of the 5 grouped prizes, I sum the probability 

of the prizes in each original group.  For example, p4 = 1/414 + 1/100 + 1/50 = 1/30.84.  

Section 5 tests the robustness of this calibration by solving for the optimal probabilities 

with given prize sizes. 

Calibration of number of gains in subjective probability prize structure: 

 

Given that scratch tickets predominantly pay out much larger prizes than the cost 

of the ticket, I assume that the smallest of the 5 prizes is a loss rather than a gain. I test 

the robustness of this assumption in Section 5 by changing the number of gains. 

Calibration of rf: 

 

I calibrated rf = 0.31 assuming the PLS program invests the deposits in 30-year 

treasuries, or another asset of similar risk.  This reflects the behavior of banks in the U.S. 

with client deposits, and allows for a higher return on the program than a standard 

savings account.  The current return on 30-year treasuries is approximately 3.1%.
10

  This 

calibration may be conservative given that the 200-day moving average rate is 3.3%. 

Calibration of g: 

 

I calibrated the value of g = $160 based upon the cost to participate in the 

Premium Bond program in the U.K (£100)
11

 using a conversion rate of £1 = $1.60.
12

  As 

a successful large-scale program, this calibration demonstrates how a similarly sized 

                                                      
10 Source: www.google.com/finance 
11

 Source: Kearney et al. (2010) 
12

 Source: www.google.com/finance 
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program can be designed more effectively.  To test for the robustness of the calibration, I 

solve for a smaller sized program comparable to the existing U.S. programs in Section 5. 

Calibration of n: 

 

I calibrated n by determining the minimum number of participants necessary to 

guarantee that q1 will pay out one ticket.  This calibration makes the weakest assumption 

possible about the number of participants while still allowing all of the prizes to be paid 

out.  Given that q1 = 1/600,000, n = 600,000. 

Calibration of indivisible goods: 

 

The three indivisible goods I calibrated for my model are goods that low-income 

individuals are unable to consume due to bad access to credit markets.  As shown in a 

study done by the Center for American Progress, low-income individuals are more likely 

to be denied for loans than higher-income individuals.  The study cites that, without 

credit market access, few of these individuals can afford to purchase a car, home, or 

college education (Weller, 2007, p. 1).   

In prioritizing the purchase of the three goods (car, home, then college education) 

I examined the Consumer Expenditure to find discrete jumps in the allocation of income 

to each good between income brackets.  I worked under the assumption that a discrete 

jump in allocation toward a good at a lower income suggested higher prioritization of this 

good.  The data show that a discrete jump in income allocated toward vehicle outlays 

(approximately 2%) occurs at a lower income than a discrete jump in owned dwellings 

(approximately 2%).
13

  There is no discrete jump in the allocation of income toward 

education for the income brackets provided.  As a result, the data from the Consumer 

                                                      
13

 Source: http://www.bls.gov/cex/csxstnd.htm 



40 

 

Expenditure Survey suggests that the car is prioritized in consumption, followed by the 

home and college education. 

Calibration of y0, z0, and h0: 

 

Examining data compiled by a sample of lotteries, I found that median income 

before taxes of lottery consumers was approximately $35,000.
14

  From here, I calibrated 

the effective tax rate for this income bracket using a tax rate calculator.  With an effective 

tax rate of approximately 14%, I found that income after taxes is approximately y0 = 

$30,000.
15

  To calculate z0, I used a living wage calculator for a sample of states in the 

U.S.  Taking the median value, I found that living wage, or the minimum level of 

sustenance, is approximately z0 = $23,000.
16

  The amount of h0 follows from the 

difference between income after taxes and the minimum level of sustenance.  To account 

for error in the estimation of y0 and z0, I test for the robustness of my calibration in 

Section 5. 

Calibration of c(x2) and d(x2): 

 

The values of c(x2) are calibrated from several sources that analyze data on each 

of the three chosen indivisible goods.  The price of a car, $13,105, is calibrated from the 

average price of new and used vehicle sales from RITA for 2011.
17

  The price of a home, 

                                                      
14

 Sources: http://www.winningwithnumbers.com/lottery/games/missouri/ 

http://www.kylottery.com/apps/customer_service/common_questions.html 

http://www.state.wv.us/lottery/faq-complete.htm#Lottery4 

http://www.molottery.com/learnaboutus/funfacts.shtm 

http://www.naspl.org/index.cfm?fuseaction=content&menuid=14&pageid=1053 

http://www.oregonlottery.org/About/Lottery101/MythsandFacts.aspx 

http://retailers.coloradolottery.com/retailer-extranet/games 
15

 Source: http://www.smartmoney.com/personal-finance/taxes/whats-your-average-tax-rate-

9548/ 
16

 Source: http://www.livingwage.geog.psu.edu/ 
17

 Source: 

http://www.bts.gov/publications/national_transportation_statistics/html/table_01_17.html 
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$20,413, is calibrated from the average down payment on existing homes in 2011
18

, as a 

percentage, multiplied by the average sales price of existing homes in 2011 from NAR.
19

  

The price of a college education, $15,014 is taken from the NCES estimate for the 

average cost of a 4-year public institution.
20

   

The utility derived from the indivisible goods, d(x2), is calibrated based upon the 

intuition that follows from the prioritization of the goods.  The car, purchased first, 

provides the largest kink in the indirect utility function.  The house and the college 

education provide smaller kinks, given that the agent chooses to consume these goods 

after the car.  I test for the robustness of the calibrated parameter values in Section 5. 

Calibration of δ and ε: 

 

I calibrated δ = 0.6 and ε = 0.4 such that divisible goods are favored more 

strongly than indivisible goods.  Given that divisible goods include sustenance goods that 

are necessary for survival, it is intuitive that these goods are weighted higher than 

indivisible goods. 

Solving the direct utility function for the indirect utility function: 

 

This derivation is a qualitative exercise to demonstrate how the indirect utility 

function can be derived from the direct utility function.  First, I maximize the direct 

utility function for x1
*
 conditional upon different values of x2.  Given the choice of which 

indivisible goods are consumed, this solves for the optimal level of x1.  The maximization 

becomes:  

 
 

 

                                                      
18

 Source: http://marketing.lendingtree.com/pr/map_info_graphic.jpg 
19

 Source: http://www.realtor.org/topics/existing-home-sales 
20

 Source: http://nces.ed.gov/fastfacts/display.asp?id=76 
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Maximizex1,x2Uig(x1,x2) = x1
 * (w(x2))  

 

 subject to:  
 

y1 ≥ P1x1 + c(x2) 

   
  x2 = {0, 1, 2, 3} 
 

  c(x2) ={

i  x   ,   ,  0 

i  x   ,   ,    
i  x   ,   ,    

 

 
  x1 ≥ 0 
   

In this maximization, P1 and c(x2) are the prices of x1 and x2, respectively.  The first 

constraint specifies that total consumption is less than income in the second stage, while 

the last constraint specifies that consumption of divisible goods be greater than 0.  

Solving for each x1
*
(x2), I get the following maximized values for Uig(x1,x2) conditional 

upon the level of indivisible goods: 

 

Uig(x1,x2) = {
i  x  0,                                           

  

  
)

i  x  { ,  ,  },  
        )

  
)  w x ))

 
 

 

By setting the conditional Uig(x1,x2) equal for adjacent levels of indivisible goods and 

solving for income, I calculate the kinks in income, y1(x2), at which the consumer derives 

higher marginal utility from purchasing the next indivisible good.  Calibrating P1 = 25, 

the kinks in consumption are: 

y1(x2) = {

i  x   , y     , 0 

i  x   , y     ,   

i  x   , y     ,   

 

It is utility maximizing to purchase each indivisible good at y1(x2) = z0 + c(x2).  This 

follows from the intuition that once income exceeds the minimum level of sustenance 
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allocated to x1, the consumption of indivisible goods offers a higher marginal utility than 

divisible goods.  While several of the parameters are calibrated to derive the same 

calibrated kinks demonstrated in the model, similar values for these parameters would 

provide the same qualitative results.   

3 gains prize structure: 

Table 7.2 

 

3 Gains q1 q2 q3 q4 q5 

Size ($) 2,972,250 116 5 0 0 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 99.87% 0.06% 0.07% 0% 0% 

 

γ
+ 

= .56 prize structure: 

Table 7.3 

 

γ
+
 = 0.56 q1 q2 q3 q4 q5 

Size ($) 2,877,070 30 5 5 0 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 96.67% 0.02% 0.07% 3.24% 0% 

 

2-kink prize structure: 

Table 7.4 

 

2 Kinks q1 q2 q3 q4 q5 

Size ($) 26,715 26,707 6,293 0 0 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 0.90% 13.46% 85.64% 0% 0% 

 

h0 = $12,000 prize structure: 

Table 7.5 

 

h0 = $12,000 q1 q2 q3 q4 q5 

Size ($) 36,587 36,562 1,224 14 14 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 1.23% 18.42% 16.66% 9.19% 55.50% 
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h0 = $2,000 prize structure: 

Table 7.6 

 

h0 = $2,000 q1 q2 q3 q4 q5 

Size ($) 46,598 46,586 16 16 16 

Tickets 1 15 405 19,449 115,385 

% Prize Pool 1.57% 23.48% 0.22% 10.78% 63.95% 

 

4-prize prize structure: 

Table 7.7 

 

Prize Probability 

q1 p1 = 1/600,000.00 

q2 p2 = 1/40,000.00 

q3 p3  = 1/1,481.40 

q4 p4  = 1/30.84 

0 p5 = 1/1.03 

 

Figure 7.1 

 
 

6-prize prize structure: 

Table 7.8 

 

Prize Probability 

q1 p1 = 1/600,000.00 

q2 p2 = 1/40,000.00 

q3 p3  = 1/1,481.40 

q4 p4  = 1/30.84 

q5 p5 = 1/5.20 

q6 p6 = 1/3.00 

0 p7 = 1/2.27 
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