Math 13 Spring 2010: Exam 1
 February 23, 2010

Name:

Instructions: Each problem is scored out of 8 points for a total of 32 points. You may not use any outside materials(eg. notes or calculators). You have 50 minutes to complete this exam. Remember to fully justify your answers.

Score:

Problem 1.

(a) Find an equation for the tangent line to $\vec{r}(t)=\langle\cos t, 2 \sin t, t\rangle$ at $(1,0,0)$.
(b) Find the distance from $(1,4,2)$ to the plane $2 x-6 y+z=3$.
(c) Find the angle of intersection of the two planes $2 x+y-3 z=-1$ and $x+2 y-z=4$.

Proof.
(a) The point occurs at $t=0$. We have $\vec{r}^{\prime}(t)=\langle-\sin t, 2 \cos t, 1\rangle$ and hence $\vec{r}^{\prime}(0)=\langle 0,2,1\rangle$, which is the direction of the line. We have the line

$$
\langle 1,2 t, t\rangle .
$$

(b) We use the distance formula

$$
\begin{aligned}
d & =\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{|2-24+2-3|}{\sqrt{4+36+1}} \\
& =\frac{23}{\sqrt{41}} .
\end{aligned}
$$

(c) We know the angle between two planes is the angle between their normal vectors. The two normal vectors are

$$
\vec{n}_{1}=\langle 2,1,-3\rangle \quad \text { and } \quad \vec{n}_{2}=\langle 1,2,-1\rangle .
$$

We compute the angle between them as

$$
\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\vec{n}_{1}\right|\left|\vec{n}_{2}\right|}=\frac{2+2+3}{\sqrt{14} \sqrt{6}}=\frac{7}{\sqrt{84}}
$$

So we have

$$
\theta=\cos ^{-1} \frac{7}{\sqrt{84}}
$$

Problem 2.

(a) Find the vector function that represents the curve of intersection of the paraboloid $z=4 x^{2}+y^{2}$ and the parabolic cylinder $y=x^{2}$. Find the point(s) where this curve intersects the plane $x+2 y=3$?
(b) Suppose you start at the point $(0,0,3)$ and move 5π units along the curve $\vec{r}(t)=\langle 3 \sin t, 4 t, 3 \cos t\rangle$. Where are you now?

Proof.
(a) We parameterize the cylinder as $x=t, y=t^{2}$. Then we use the paraboloid to get

$$
\vec{r}(t)=\left\langle t, t^{2}, 4 t^{2}+t^{4}\right\rangle .
$$

To find the point(s) of intersection we solve

$$
t+2 t^{2}-3=(t-1)(2 t+3)=0
$$

to get $t=1, t=-\frac{3}{2}$ to get the two points

$$
\vec{r}(1)=\langle 1,1,5\rangle \quad \text { and } \quad \vec{r}\left(-\frac{3}{2}\right)=\left\langle-\frac{3}{2}, \frac{9}{4}, 9+\frac{81}{16}\right\rangle .
$$

(b) We parameterize with respect to arc length. We compute

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\langle 3 \cos t, 4,-3 \sin t\rangle \\
\left|\vec{r}^{\prime}(t)\right| & =\sqrt{9 \cos ^{2} t+16+9 \sin ^{2} t}=\sqrt{25}=5 .
\end{aligned}
$$

The point $(0,0,3)$ occurs at $t=0$ so we have

$$
\begin{aligned}
s(t) & =\int_{0}^{t}\left|\vec{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{t} 5 d t=5 t
\end{aligned}
$$

So we have $t=\frac{s}{5}$. So the parametrization with respect to arc length is

$$
r(s)=\left\langle 3 \sin \frac{s}{5}, \frac{4}{5} s, 3 \cos \frac{s}{5}\right\rangle
$$

So we have

$$
r(5 \pi)=\langle 0,4 \pi,-3\rangle .
$$

Problem 3. Given the curve $\vec{r}(t)=\left\langle t^{2}-1,2 t+3, t^{2}-4 t\right\rangle$
(a) Find the curvature at $(3,7,-4)$.
(b) Find an equation for the normal plane at $(3,7,-4)$.

Proof.
(a) The point occurs at $t=2$. We compute

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\langle 2 t, 2,2 t-4\rangle \\
\vec{r}^{\prime}(2) & =\langle 4,2,0\rangle \\
\left|\vec{r}^{\prime}(2)\right| & =\sqrt{20} \\
\vec{r}^{\prime \prime}(t) & =\langle 2,0,2\rangle
\end{aligned}
$$

We compute

$$
\langle 4,2,0\rangle \times\langle 2,0,2\rangle=\langle 4,-8,4\rangle=4\langle 1,-2,-1\rangle
$$

So we have

$$
\kappa=\frac{|4\langle 1,-2,-1\rangle|}{|\langle 4,2,0\rangle|^{3}}=\frac{4 \sqrt{6}}{20 \sqrt{20}}=\frac{\sqrt{3}}{5 \sqrt{10}} .
$$

(b) The normal plane has normal vector \vec{T}. So compute

$$
\begin{aligned}
& \vec{T}(t)=\frac{1}{\sqrt{4 t^{2}+4+(2 t-4)^{2}}}\langle 2 t, 2,2 t-4\rangle \\
& \vec{T}(2)=\frac{1}{\sqrt{20}}\langle 4,2,0\rangle
\end{aligned}
$$

which is in the direction $\langle 2,1,0\rangle$. So we have the plane

$$
2(x-3)+(y-7)=0 .
$$

Problem 4. Given $\vec{r}(t)=2 t^{2} \hat{i}+t \hat{j}+\hat{k}$.
(a) Find the tangential and normal components of acceleration as functions of t.
(b) What is the minimum speed and for what t does the minimum speed occur?

Proof.
(a) We have

$$
\begin{aligned}
r^{\prime}(t) & =\langle 4 t, 1,0\rangle \\
r^{\prime \prime}(t) & =\langle 4,0,0\rangle
\end{aligned}
$$

so we have

$$
\begin{aligned}
& a_{T}=\frac{r^{\prime} \cdot r^{\prime \prime}}{\left|r^{\prime}\right|}=\frac{16 t}{\sqrt{16 t^{2}+1}} \\
& a_{N}=\frac{\left|r^{\prime} \times r^{\prime \prime}\right|}{\left|r^{\prime}\right|}=\frac{|0,0,-4|}{\sqrt{16 t^{2}+1}}=\frac{4}{\sqrt{16 t^{2}+1}} .
\end{aligned}
$$

(b) We compute speed as

$$
v=\left|\vec{r}^{\prime}(t)\right|=\sqrt{16 t^{2}+1}
$$

This is a $\max /$ min problem so we solve for the critical points:

$$
\begin{gathered}
\frac{d}{d t} \vec{v}(t)=a_{T} . \\
a_{T}=\frac{16 t}{\sqrt{16 t^{2}+1}}=0
\end{gathered}
$$

to get $t=0$. This gives a minimum speed of 1 and is clearly a minimum since v contains only t^{2}.

