Amherst College
Economics 58
Fall 2010

Solutions to PS \# 4

1. a. Use of the Lagrangian technique yields

$$
y /(x+1)=p_{x} / p_{y} \quad \text { or } \quad p_{y} y=p_{x} x+p_{x}
$$

Substitution into the budget constraint provides

$$
x=\frac{I-p_{x}}{2 p_{x}} \quad y=\frac{I+p_{x}}{2 p_{y}} .
$$

Hence, changes in p_{y} do not affect x, but changes in p_{x} do affect y.
b. The indirect utility function is $V=\frac{\left(I+p_{x}\right)^{2}}{4 p_{x} p_{y}}$
and this yields an expenditure function of

$$
E=\sqrt{V 4 p_{x} p_{y}}-p_{x}
$$

c. Clearly the compensated demand function for x depends on p_{y}, whereas the uncompensated function did not. By Shepherd's Lemma:

$$
x^{c}=\frac{\partial E}{\partial p_{x}}=V^{0.5} p_{x}^{-0.5} p_{y}^{0.5}-1
$$

2. In class we showed that if price rises from p_{1} to $\alpha \mathrm{p}_{1}$ the resulting compensating variation is given by: $C V=p_{1} x_{1}\left(\alpha^{b+1}-1\right) /(b+1)$. Here are a few simulated values for the case $\alpha=1.1$:

b	$C V\left(\right.$ proportion of $\left.p_{1} x_{1}\right)$
0	0.1
-0.5	0.098
-1.5	0.093
-5	0.082
-10	0.064

3. By definition $\alpha_{n}=\frac{-\Delta q}{\Delta p} \frac{p}{q}=\frac{q^{1}}{p^{*}-p^{1}} \cdot \frac{p^{1}}{q^{1}}$ so

$$
C S=.5 q^{1}\left(p^{*}-p^{1}\right)=\frac{.5}{\alpha_{n}} \cdot p^{1} q^{1} \text { as was to be shown. }
$$

