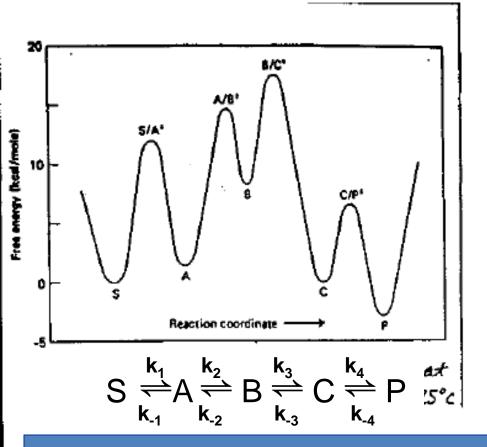
BioChem 330 - Course Outline

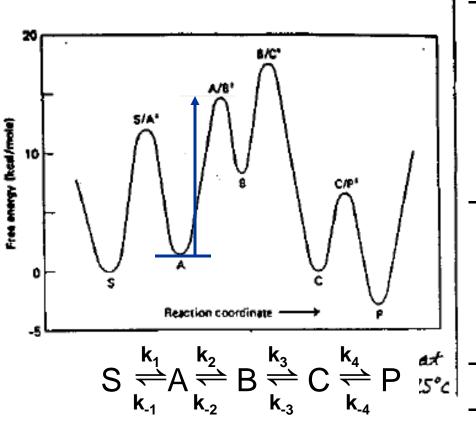

October 13,18, 2011

- Bio-molecular Structure/Function (I cont'd)
 - NUCLEIC ACID
 - DNA sequence and structure
 - Protein/nucleic acid interactions
 - CARBOHYDRATES
 - Sugars mono and disaccharides
 - Polysaccharides
 - Glycerides and glycerol
 - FATS AND LIPIDS
 - Chemistry and nomenclature for fatty acids
 - Saturated and unsaturated fatty acids
 - Fluid mosaic model of membrane structure

BioChem 330 - Course Outline

- Metabolism and Bioenergetics (II)
 - ENZYME CATALYSIS:
 - kinetic constants k_{cat}, K_m
 - Catalytic strategies, the serine proteases
 - CATABOLISM (breakdown)
 - Carbohydrates
 - Glycolysis
 - Tricarboxylic Acid Cycle
 - Electron Transport
 - Chemiosmosis and ATPase
 - Fatty acids and amino acids

REACTION COORDINATE DIAGRAMS

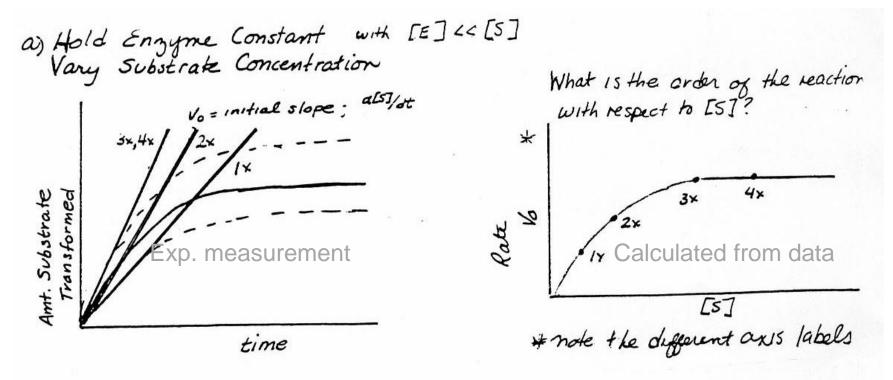


Reaction Coordinate Diagram can be reconstructed once all the forward and reverse rate constants are measured at a particular T.

Intermediates:

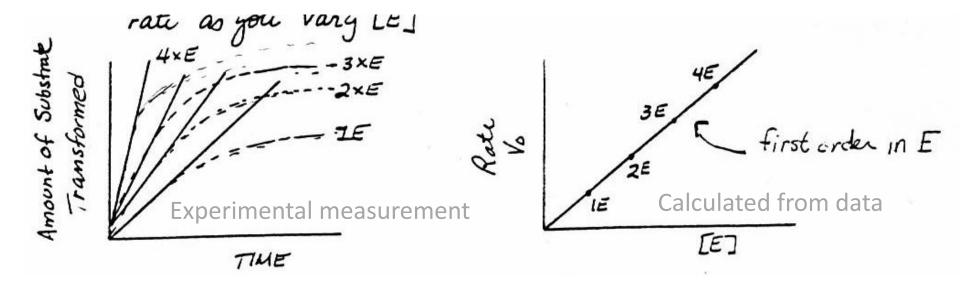
- A, B and C are intermediates in the conversion of S to P.
 Intermediates can accumulate and reach steady states in concentration.
- <u>TS Complexes</u>:
 - S/A[‡], A/B[‡], B/C[‡], and C/P[‡]
 are transition state
 complexes which have a
 fleeting existence and can
 only be poorly defined.

REACTION COORDINATE DIAGRAMS



- The rate or velocity, V, is limited by the rate determining step; that step with the largest barrier, or smallest rate constant, here $A \rightarrow B$, k_2
- V depends on the combined rates of all the elementary steps up to the slowest step, which determines [A].

- Conversion A \rightarrow B k₂ = 10³s⁻¹


- Activation Barrier:
- $-\Delta G^{*} = 17.6 1.36 \log k$
 - $= 17.6 1.36 \log 10^3$
- = 13.5 kcal/mole at 25.0°C

What is the order of enzyme reaction w.r. to [S]?

- Biological conditions of small [E] compared to [S].
- Reaction is first order with respect to [S] at low concentrations of [S], then zero order at high [S]
- Can only be explained by presence of specific [ES] complex.

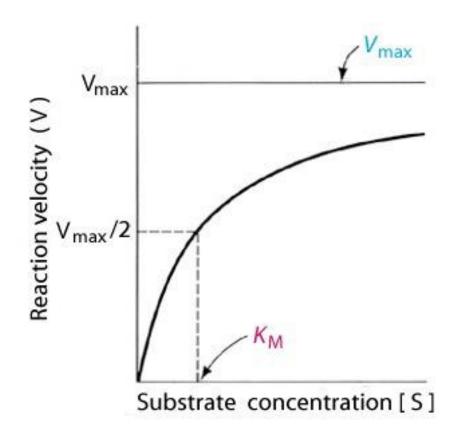
What is the order of the reaction with respect to [E]?

- Here, [S] is held constant and Rate is measured as a function of enzyme concentration (but still at concentrations of [E] much lower than [S]
- Rate is first order in [E].
- Whatever rate expression you propose, it must have the three characteristics, first order in [S] at low [S], zero order in [S] at high [S] and first order in E.

Proposed Michaelis Menten Mechanism

- $\mathbf{E} + \mathbf{S} \xrightarrow[k_{-1}]{k_{-1}} \mathbf{ES} \xrightarrow{k_2} \mathbf{E} + \mathbf{P}$
- Assume ES reaches a steady state with E and S
 - Rate of formation of ES equals the rate of breakdown
 - $k_1[E][S] = k_{-1}[ES] + k_2[ES] = (k_{-1} + k_2)[ES]$
 - [ES] = $k_1[E][S] / (k_{-1} + k_2) = [E][S] / K_m$
- Assume k₂ is the catalytic step: product dissociates rapidly
 - Velocity = k_2 [ES]
 - [ES] =[E][S] /K_m
 - [ES] =(([E_t] [ES])[S_t]) / K_m
- Solve this for ES
- Plug into Velocity equation above
- Velocity = $\underline{k}_{2}[\underline{E}_{\underline{t}}][\underline{S}_{\underline{t}}] = \underline{k}_{\underline{cat}}[\underline{E}_{\underline{t}}][\underline{S}_{\underline{t}}] = \underline{V}_{\underline{max}}[\underline{S}_{\underline{t}}]$
 - $K_{m} + [S_{t}]$ $K_{m} + [S_{t}]$ $K_{m} + [S_{t}]$

Define:
$$V_{max} = k_{cat}[E_t]$$

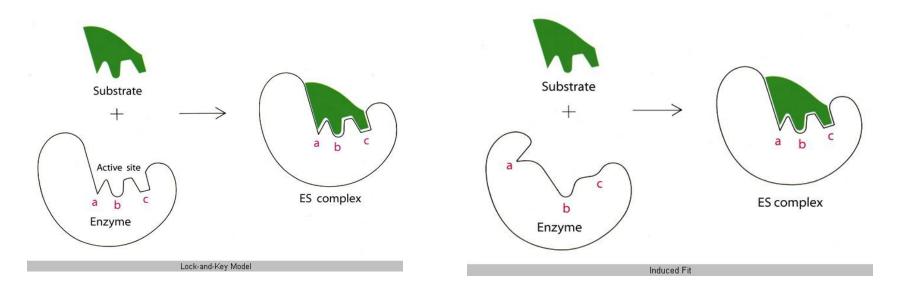


$$[ES] = \underline{[E_t][S_t]}$$
$$K_m + [S_t]$$

$$K_{m} = (k_{-1} + k_2) / k_1$$

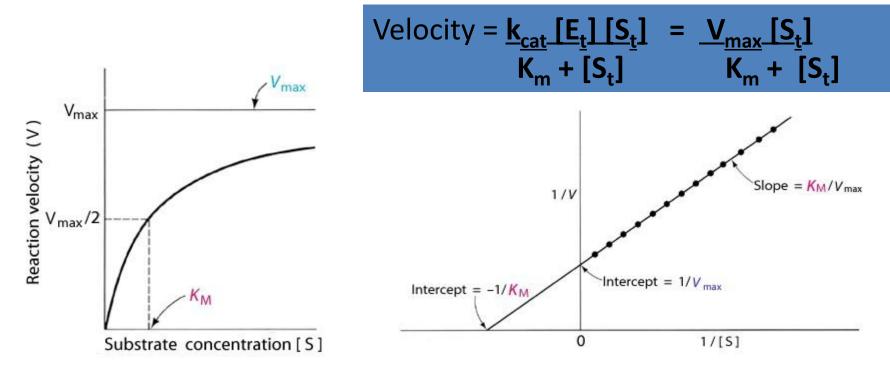
 $[E] << [S], [S] = [S_t]$

Michaelis Menten Kinetics


• Velocity =
$$\underline{V}_{\underline{max}}[\underline{S}_{\underline{t}}]$$

•
$$K_m + [S_t]$$

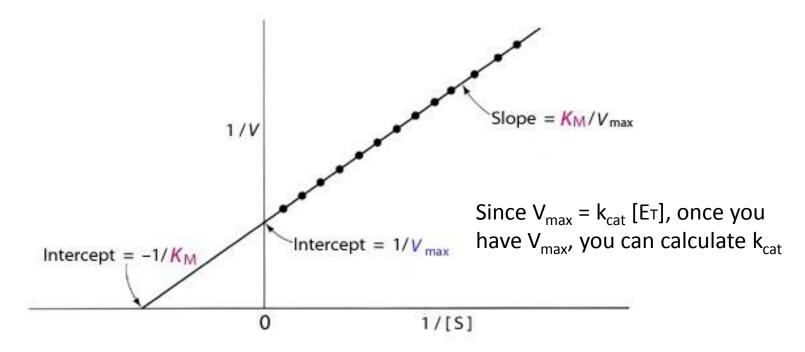
- When [S] is small, the reaction is first order.
- When [S] is large, the reaction is zero order in [S], velocity is at V_{max}
- Reaction is always first order in [E]


• When
$$[S] = K_m, V = \frac{1}{2}V_{max}$$

ES Complex* Michaelis Complex

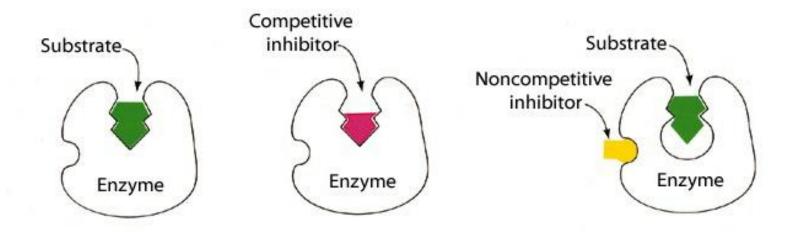
- Lock and Key Model Induced Fit Model
- K_m measures the affinity of an enzyme for a particular substrate (often an enzyme can bind and catalyze reaction on a family of closely related substrates)
- higher K_m, lower binding, K_m is like a dissociation constant

Graphical Means of Extracting M² Parameters

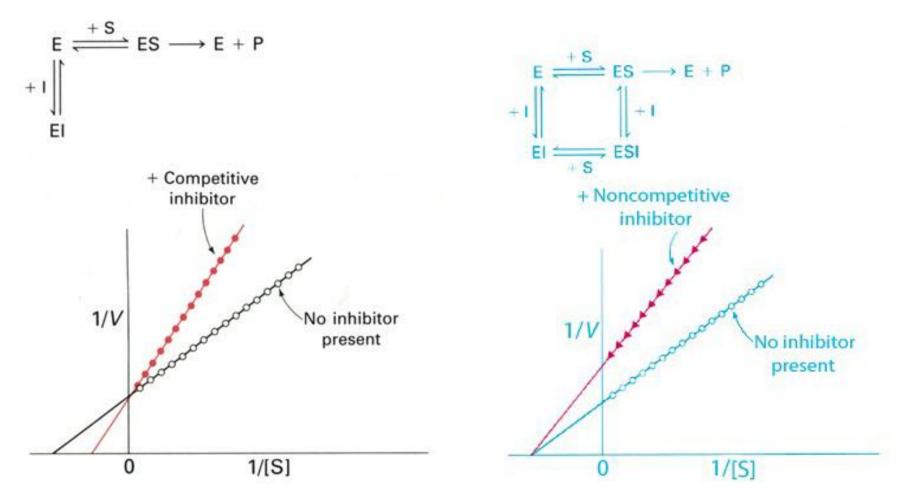


- Hyperbolic Curve
- V_{max} = asymptotic max.
- $k_{cat} = V_{max} / [E_t]$
- $K_m = [S]$ at $\frac{1}{2} V_{max}$

Lineweaver-Burk Plot


 $V_{max} = 1/Y_{intercept}$ $k_{cat} = V_{max} / [E_t]$ $K_m = -1/X_{intercept}$

Lineweaver Burk Plots


- These plots, known as double reciprocal plots, are a much preferred way of plotting data for an enzyme catalyzed reaction, though this idealizes error.
- Km is derived from the -1/X intercept
- V_{max} is derived from the 1/Y intercept

Reversible Enzyme Inhibition

- Competitive inhibitors slow down a reaction by competing with substrate for the active site, kcat not affected but Km appears to be higher (appears to be worse binding)
- Noncompetitive inhibitors slow down a reaction by binding at a remote site and slowing down kcat, Km not affected.

How to Distinguish Types of Inhibition

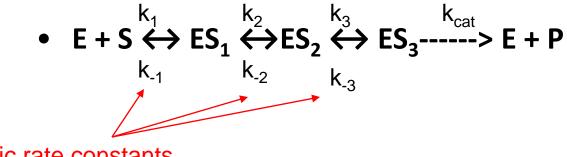
 Competitive and Noncompetitive Inhibition can be distinguished by how they affect the double reciprocal plots

Meaning of Michaelis Constants

- I. k_{cat} (turnover number).... the number of substrate molecules converted into product molecules by an enzyme molecule in a unit of time when the enzyme is fully saturated with substrate.
 - Turnover number is calculated from $k_{cat} = V_{max}/E_t$
 - Has units of s⁻¹ (like a first order rate constant)
 - May or may not be a microscopic rate constant, in M² mechanism, k_{cat} = k₂
 - Range of about 1-10⁷ s⁻¹
 - The turnover number of most enzymes falls between 1 and 10,000 substrates converted to product per enzyme molecule per sec.

Turnover numbers

I. k_{cat} (turnover number) continued


Maximum turnover # of some enzymes

	k_{cat} (per s) reaction time	
carbonic anhydrase	600,000	1.7 us
3-ketosteroid isomerase	280,000	3.6 us
Acetylcholinesterase	25,000	40. us
Penicillinase	2,000	500. us
Chymotrypsin	100	10. ms
DNA polymerase I	15	67. ms
Tryptophan Synthase	2	500. ms
Lysozyme	0.5	2 s

NO MICROSCOPIC RATE CONSTANT CAN BE SLOWER THAN k_{cat}

 k_{cat} cannot be greater than any first order rate constant along the forward reaction pathway, and thus helps to set a lower limit on all of the microscopic rate constants.

- I. k_{cat} (turnover number) continued
- What is a microscopic rate constant?
- NO MICROSCOPIC RATE CONSTANT CAN BE SLOWER THAN k_{cat}

- microscopic rate constants
- k_{cat} cannot be greater than any first order rate constant along the forward reaction pathway, and thus helps to set a lower limit on all of the microscopic rate constants.

II. K_m, the Michaelis constant

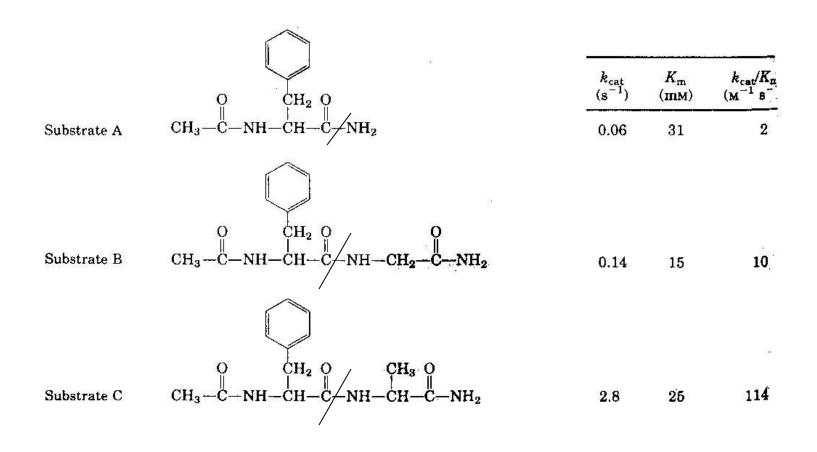
- experimentally measured from [S] at ½ V_{max}
- Units of M or mM or μM
- represents dissociation of Michaelis complex and is either a true or apparent dissociation equilibrium constant
- $K_m = [E] [S] / \sum [ES_n]$
- ◆ Range 10⁻⁷ to 10⁻³ M

🖙 Enzyme	Substrate	K _m (mM)
Chymotrypsin	acetyl-tryptophanamide	5000
🖙 Lysozyme	hexa-N-acetylglucosamine	6
b-Galactosidase	Lactose	4000
Thr deaminase	Threonine	5000
Carbonic Anhydrase	CO ₂	8000
Pyruvate carboxylase	Pyruvate	400
-	HCO ₃ -	1000
-	ATP	60

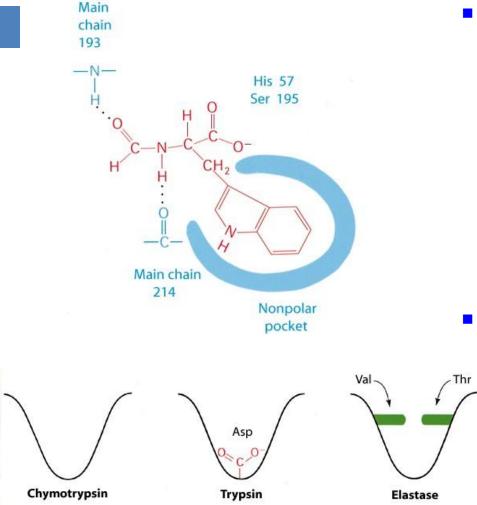
- II. K_m, the Michaelis constant (cont'd)
- It is informative to compare the natural substrate concentration and K_m, [S]/K_m
 - If [S]/K_m < 1; [S] <K_m; the enzyme is not very saturated and the system is not working at full capacity.
 - If [S]/K_m = 1; [S] = K_m; the enzyme is half saturated, and here, the system is both working at a decent velocity and quite sensitive to changing conditions.
 - If [S]/K_m> 1; [S] > K_m; the enzyme is saturated with substrate and the system is working at full capacity, but NOT sensitive to changes in substrate concentration.
- The [S]/K_m ratio is typically between 0.01 and 1.0. This can be interpreted as most systems not working at full capacity, so that they function with a built in throttle to rapidly accelerate the rate should there be a sudden biological demand.

- III. Kinetic Perfection in Enzymic Catalysis, The k_{cat}/K_m criterion
 - ♦ Velocity = $\underline{k}_{cat} [\underline{E}_{t}] [\underline{S}_{t}]$ ♦ $K_m + [S_t]$
- When enzymes are not saturated with substrate,

• V = $(k_{cat}/K_m) [E_t] [S]$

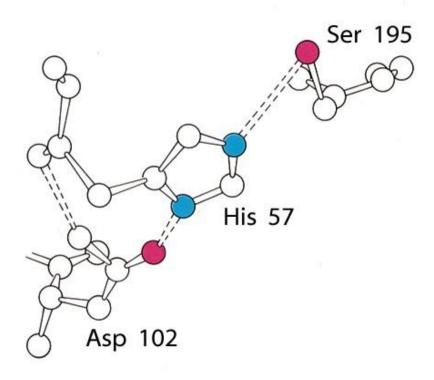

- Graphically (k_{cat}/K_m) [E_t] is the slope of V vs [S] at low [S]
- k_{cat}/K_m has units of M⁻¹s⁻¹
- k_{cat}/K_m is an apparent second order rate constant looks at free [E] with [S] and is really of interest when studying enzyme-substrate specificity

III. Kinetic Perfection in Enzymic Catalysis, The k_{cat}/K_m criterion

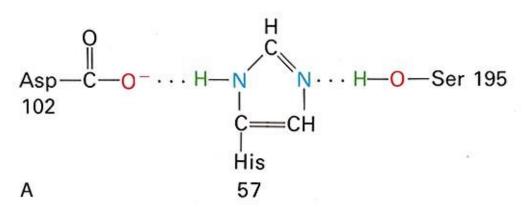

- k_{cat}/K_m is a critical parameter when assessing enzyme specificity for competing substrates, if k_{cat}/K_m increases, the specificity increases.
- Some enzymes have k_{cat}/K_m of 10⁷ or 10⁸ M⁻¹s⁻¹, which is amazing specificity! (diffusion controlled second order rate constants are about this value)
- Let's look at the effects of small structural changes in the substrate on the kinetic parameters for chymotrypsin catalyzed amide hydrolysis:

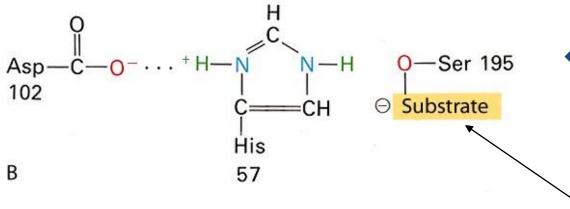
III. Kinetic Perfection in Enzymic Catalysis, The k_{cat}/K_m criterion

Effects of small structural changes in the substrate on the kinetic parameters for chymotrypsin catalyzed amide hydrolysis



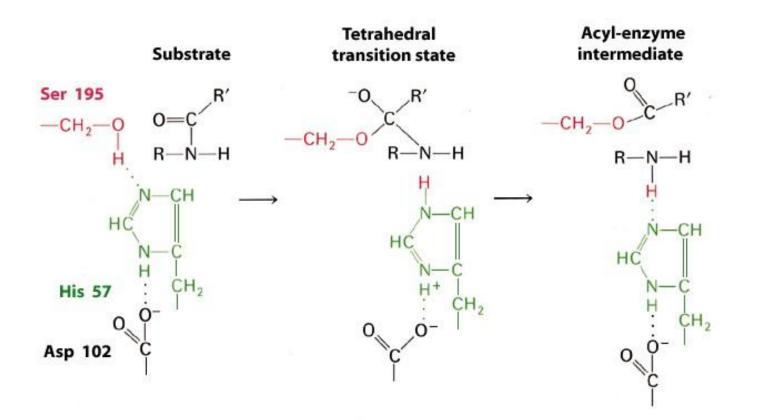
A Family of Serine Proteases


- Substrate specificity pocket helps chymotrypsin choose the right substrate
 - large nonpolar channel into which side group can be place adjacent to scissile bond (bond to be cut by enzyme)
- Other serine proteases have other specificity pockets
 - Lys, Arg for Trypsin (Asp in bottom of oxyanion hole
 - Ala, Val for Elastase


Proteases: Enzymes that Hydrolyze Peptide Bonds

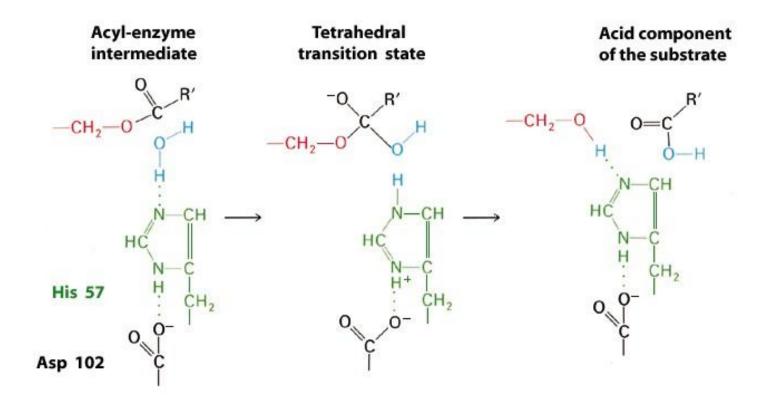
- Catalytic Triad in Serine Proteases:
 - Serine 195
 Nucleophile
 - His 57, neutral, acts as a proton shuttle
 - Asp 102, activates His through H bonding

Proteases: Enzymes that Hydrolyze Peptide Bonds


- How the catalytic triad works
 - Ser is activated by His, to which it transfers a H when it attacks the carbonyl of the substrate
 - His holds onto H from serine transiently, His+ stabilized by Asp- in acyl enzyme
 intermediate

http://www.amherst.edu/~pbohara/

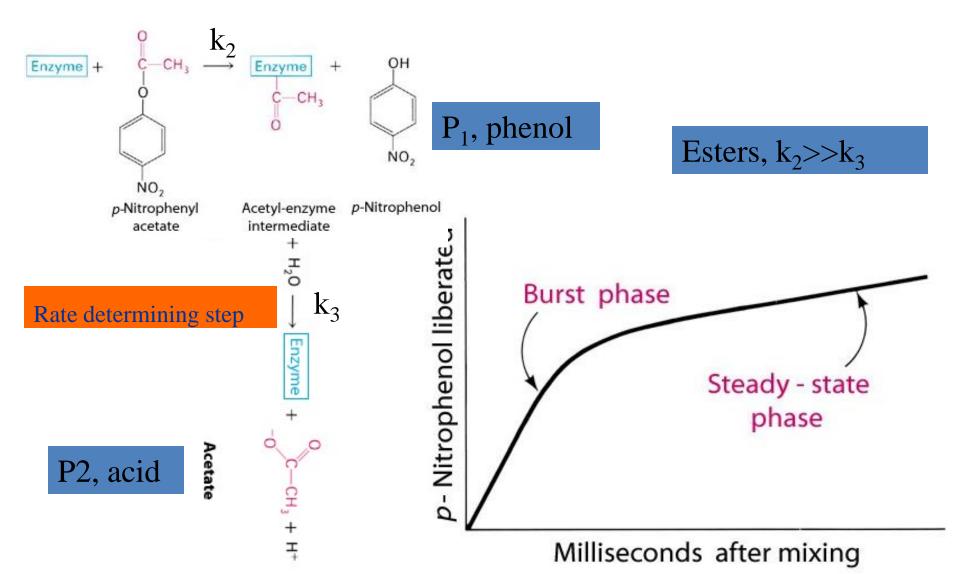
Catalytic Mechanism for Trypsin


Phase I

E + S = ES --> [ES]^{tt} --> EA + P₁ (amino)

Catalytic Mechanism for Trypsin

- Phase II
 - EA --> [EA]^{tt} --> E + P₂ (carboxylate)



Proteases:Enzymes that Hydrolyze Peptide Bonds

- Amide Bond Hydrolysis
- $E + S = ES \rightarrow EA + P_1 \rightarrow E + P_2$
- For amide bond hydrolysis, formation of EA is rate limiting, k₂<k₃, k₂ is rate limiting

Ping Pong Mechanism

Ester Bond Hydrolysis, k₂ is much faster, now k₃ is rate limiting

