Math 12 Spring 2009: Exam 3

Name:
Instructions: There are 4 questions on this exam each of which is scored out of 8 points for a total

of 32 points. You may not use any outside materials (eg. notes or books). You have 50 minutes to
complete this exam. Remember to fully justify your answers.

Score:



Problem 1. Determine whether or not the sequence converges, and finds its limit if it does converge.
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(b) We compute using L’Hopital’s rule twice.
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so this diverges.



Problem 2. Determine whether or not the following series converge absolutely, converge conditionally,
or diverge.
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Proof.

(a) We apply the limit comparison test to the convergent p-series y -,
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Since this is a finite nonzero value, we know from the limit comparison test that > -,
also converge.
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(b) We apply the root test to see
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Since 5 > In 2 this quantity is > 1 and by the root test the series diverges.




Problem 3. Find the interval and radius of convergence of
i (z+2)"
ooV

Proof. Applying the ratio test to the given series gives
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We have that R = 1 and converges for —3 < x < —1. We now need to check the endpoints.
Checking = —1 we get the series
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which is a p-series with p = % so is divergent.
Checking x = —3 we get the series
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which is an alternating series. The alternating series test tells us that an alternating series converges if
and only if

(1) limy—ooan =0
(2) 0 < ant1 < ag.
Checking (1) we have
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Checking (2) we know that v/n +1 > /n for all n > 0 so we have that
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for all n > 0.

So we have satisfied both conditions of the alternating series test, so the series is convergent.
Therefore, we have
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Problem 4. Approximate fol l_iﬂdw to within ﬁ.
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This is an alternating series, so the remainder is bounded by the next term. Writing out the first few
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terms we have

Since 6(1)—0 < ﬁ we have




