Math 12 Spring 2009: Exam 3

Name:

Instructions: There are 4 questions on this exam each of which is scored out of 8 points for a total of 32 points. You may not use any outside materials (eg. notes or books). You have 50 minutes to complete this exam. Remember to fully justify your answers.

Score:

Problem 1. Determine whether or not the sequence converges, and finds its limit if it does converge.
(a) $a_{n}=\frac{n^{2}+5}{\sqrt{4 n^{4}+n}}$
(b) $a_{n}=\frac{n}{(\ln n)^{2}}$

Proof.
(a) We compute

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+5}{\sqrt{4 n^{4}+n}}=\lim _{n \rightarrow \infty} \frac{1+5 / n^{2}}{\sqrt{4+1 / n^{3}}}=\frac{1}{\sqrt{4}}=\frac{1}{2}
$$

(b) We compute using L'Hopital's rule twice.

$$
\lim _{n \rightarrow \infty} \frac{n}{(\ln n)^{2}}=\lim _{n \rightarrow \infty} \frac{n}{2 \ln n}=\lim _{n \rightarrow \infty} \frac{n}{2}=\infty
$$

so this diverges.

Problem 2. Determine whether or not the following series converge absolutely, converge conditionally, or diverge.
(a) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{3}+n}$
(b) $\sum_{n=1}^{\infty} \frac{5^{n}}{(\ln 2)^{n}}$.

Proof.
(a) We apply the limit comparison test to the convergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{n^{3}+n} \cdot n^{2}=\lim _{n \rightarrow \infty} \frac{2 n^{3}+n^{2}}{n^{3}+n}=2
$$

Since this is a finite nonzero value, we know from the limit comparison test that $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{3}+n}$ must also converge.
(b) We apply the root test to see

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{5^{n}}{(\ln 2)^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{5}{\ln 2}=\frac{5}{\ln 2}
$$

Since $5>\ln 2$ this quantity is >1 and by the root test the series diverges.

Problem 3. Find the interval and radius of convergence of

$$
\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{\sqrt{n}}
$$

Proof. Applying the ratio test to the given series gives

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{|x+2|^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{|x+2|^{n}} & \\
& =\lim _{n \rightarrow \infty}|x+2| \sqrt{\frac{n+1}{n}} \\
& =|x+2| \sqrt{\lim _{n \rightarrow \infty} \frac{n+1}{n}} \\
& =|x+2| .
\end{aligned}
$$

We have that $R=1$ and converges for $-3<x<-1$. We now need to check the endpoints.
Checking $x=-1$ we get the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

which is a p-series with $p=\frac{1}{2}$ so is divergent.
Checking $x=-3$ we get the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

which is an alternating series. The alternating series test tells us that an alternating series converges if and only if
(1) $\lim _{n \rightarrow \infty} a_{n}=0$
(2) $0<a_{n+1} \leq a_{n}$.

Checking (1) we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

Checking (2) we know that $\sqrt{n+1}>\sqrt{n}$ for all $n>0$ so we have that

$$
\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}
$$

for all $n>0$.
So we have satisfied both conditions of the alternating series test, so the series is convergent.
Therefore, we have

$$
\begin{aligned}
R & =1 \\
I & =[-3,-1) .
\end{aligned}
$$

Problem 4. Approximate $\int_{0}^{1} \frac{1-e^{-x}}{x} d x$ to within $\frac{1}{100}$.
Proof. We know $e^{x}=1+x+x^{2} / 2+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ so we have

$$
e^{-x}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!}
$$

So we have

$$
\frac{1-e^{-x}}{x}=\frac{1}{x}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\cdots\right)=1-\frac{x}{2}+\frac{x^{2}}{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{(n+1)!}
$$

Integrating term-by-term we have

$$
\begin{aligned}
\int_{0}^{1} \frac{1-e^{-x}}{x} d x & =\left(x-\frac{x^{2}}{4}+\frac{x^{3}}{18}+\cdots\right)_{0}^{1} \\
& =\left(\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n(n!)}\right)_{0}^{1} \\
& =\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n(n!)}
\end{aligned}
$$

This is an alternating series, so the remainder is bounded by the next term. Writing out the first few terms we have

$$
\int_{0}^{1} \frac{1-e^{-x}}{x} d x=1-\frac{1}{4}+\frac{1}{18}-\frac{1}{96}+\frac{1}{600}+\cdots
$$

Since $\frac{1}{600}<\frac{1}{100}$ we have

$$
\int_{0}^{1} \frac{1-e^{-x}}{x} d x \approx 1-\frac{1}{4}+\frac{1}{18}-\frac{1}{96}
$$

