Math 13 Fall 2008: Exam 1

Name:

Instructions: There are 5 questions on this exam of which you must do 4 . Each problem is scored out of 10 points for a total of 40 points. You may not use any outside materials(eg. notes or calculators). You have 50 minutes to complete this exam. Remember to fully justify your answers.

Score:

Circle below the 4 problems you wish to be graded. Otherwise, I will grade the first 4 completed problems

1
2 3 4 5

Problem 1. Consider motion along the curve

$$
\vec{r}(t)=\left\langle\sin ^{2} t, \sin t \cos t, \cos t\right\rangle, \quad 0 \leq t \leq 2 \pi
$$

(a) Find the velocity and acceleration as functions of t.
(b) At $(0,0,-1)$ find \vec{T} and κ.

Problem 2. Consider the two lines

$$
\begin{aligned}
& L 1: \frac{x-1}{6}=y-1=\frac{z}{2} \\
& L 2:\langle 5+15 t, 1+2 t,-2+6 t\rangle
\end{aligned}
$$

and the point

$$
P=(1,0,-1)
$$

(a) Show that $L 1$ and $L 2$ are skew.
(b) Find the equation of the plane containing P and $L 2$.

Problem 3. Find the parametric equations for the line that is tangent to the curve of intersection of the surfaces

$$
z=x^{2}+y^{2}, \quad 4 x^{2}+4 y^{2}+z^{2}=12
$$

at the point $(-1,1,2)$.

Problem 4. Suppose you start at the point $(0,0,3)$ and move 5π units along the curve $\vec{r}(t)=$ $\langle 3 \sin t, 4 t, 3 \cos t\rangle$ in the positive direction. Where are you now?

Problem 5. Given two vectors \vec{a} and \vec{b} which form a rhombus: a parallelogram whose sides are the same length $(|\vec{a}|=|\vec{b}|)$. Use vectors to show that its two diagonals are perpendicular.

