
Math 13, Section 01, Spring 2009

Solutions to the Final Exam

1. (15 points) Let S be the plane that contains the points (0, 0, 1), (4, 2, 0), and (1,−3, 2). Find
an equation for the line through the point (1, 0,−2) that is perpendicular to S.

Answer. Subtracting the first point from the second and third, we see that the vectors ~a =
〈4, 2,−1〉 and ~b = 〈1,−3, 1〉 lie in the plane. Their cross product is ~n = ~a × ~b = 〈−1,−5,−14〉.
Thus, ~n is orthogonal to the plane and hence parallel to the desired line. Replacing ~n by −~n for
convenience, then, the line is given by ~r(t) = 〈t+ 1, 5t, 14t− 2〉.

2. (20 points) Let f(x, y) =







2x3 + 3xy − 3y2

x2 + 2y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a). Prove that f is not continuous at (0, 0).
(b). Compute the directional derivative D~uf(0, 0), where ~u = 〈1/

√
2, 1/

√
2〉.

Answer. (a). Along the y-axis, we have lim
y→0

f(0, y) = lim
y→0

−3y2

2y2
= −3

2
6= 0 = f(0, 0). Thus, f is

discontinuous at (0, 0).

(b). D~uf(0, 0) = lim
h→0

f((0, 0) + h~u)− f(0, 0)

h
= lim

h→0

2h3
√
2
3
+

3h2
√
2
2
− 3h2

√
2
2

h
( h2
√
2
2
+

2h2
√
2
2

)

= lim
h→0

h3/
√
2

h(3h2/2)
=

√
2

3
.

3. (25 points) Find and classify (as local minimum, local maximum, or saddle point) every critical
point of the function f(x, y) = xy2 − 6x2 − 3y2 + 7.

Answer. We have fx = y2 − 12x and fy = 2xy − 6y, both of which are always defined. Setting
them both to zero, we get 12x = y2 and (x − 3)y = 0. By the second equation, either x = 3 or
y = 0. If x = 3, then the first equation gives y2 = 36, and hence y = ±6. If y = 0, then the first
equation gives x = 0. Thus, there are three critical points: (0, 0), and (3,±6).
The second derivatives are fxx = −12, fxy = fyx = 2y, and fyy = 2x − 6. Thus, the discriminant
is D = fxxfyy − f2

xy = 24(3− x)− 4y2. At (3,±6), we have D = −4 · 36 < 0, so that both of those
points are saddle points. At (0, 0), we get D = 3 · 24 > 0 and fxx = −12 < 0. so that there is a
local maximum at (0, 0).

4. (25 points) Find the maximum and minimum values of the function f(x, y) = x2y subject to
the constraint x2 + y2 = 9.

Answer. Let g(x, y) = x2+y2 and use Lagrange Multipliers. We have fx = 2xy, fy = x2, gx = 2x,
and gy = 2y. So we have to solve the system of equations 2xy = 2λx, x2 = 2λy, and x2 + y2 = 9.
The first equation gives x(y−λ) = 0, so either x = 0 or λ = y. If x = 0, then the last equation gives
y2 = 9, and so y = ±3. If x 6= 0, then λ = y, and so the second equation gives x2 = 2y2, turning
the third equation into 3y2 = 9. That gives y = ±

√
3, and hence x = ±

√
6, with no correlation

between the two ± signs.
Thus, we have six points to check: two of the form (0,±3), and four of the form (±

√
6,±

√
3).

We compute f(0,±3) = 0, f(±
√
6,
√
3) = 6

√
3, and f(±

√
6,−

√
3) = −6

√
3. Thus, the maximum

value of f is 6
√
3, and the minimum is −6

√
3.



5. (30 points) Let C be the path in the xy-plane that begins at (0, 3), runs (counterclockwise)
through the second quadrant along the arc of the circle of radius 3 centered at the origin to the
point (−3, 0), then moves right along the x-axis to the origin, and finally moves up the y-axis to

return to the starting point (0, 3). Compute

∫

C
6x2y dx+ (2x3 − xy) dy.

'

	

- 6
q q

q

(0,0)

(0,3)

(-3,0)

Answer. Let D denote the quarter-disk bounded by C; note that C is oriented positively with
respect to D. Thus, by Green’s Theorem, the integral is

∫∫

D Qx − Py dA, where P = 6x2y and
Q = 2x3 − xy. We compute Qx −Py = 6x2 − y− 6x2 = −y. Thus, converting to polar coordinates,
the integral is
∫∫

D
−y dA =

∫ π

π/2

∫

3

0

(−r sin θ)r dr dθ = −
(

∫ π

π/2
sin θdθ

)(

∫

3

0

r2 dr
)

=
(

cos θ
∣

∣

∣

π

π/2

)(r3

3

∣

∣

∣

3

0

)

= (−1− 0)(9− 0) = −9.

6. (30 points) Let S denote the sphere in R
3 of radius 2 centered at the origin, oriented outward,

and let ~F (x, y, z) = 〈y2z, yz2, x2ey〉. Compute

∫∫

S

~F · d~S.

Answer. We can use the Divergence Theorem, so we compute div ~F = 0 + z2 + 0 = z2. Denoting
the solid inside the sphere as E and using spherical coordinates, we have
∫∫

S

~F · d~S =

∫∫∫

E
z2 dV =

∫

2π

0

∫ π

0

∫

2

0

(ρ cosφ)2ρ2 sinφ dρ dφ dθ

=
(

∫

2π

0

dθ
)(

∫ π

0

cos2 φ sinφ dφ
)(

∫

2

0

ρ4 dρ
)

[u = cosφ, du = − sinφ dφ]

= 2π
(

−
∫

−1

1

u2 du
)(ρ5

5

∣

∣

∣

2

0

)

= 2π
(u3

3

∣

∣

∣

1

−1

)(32

5
− 0

)

= 2π · 2
3
· 32
5

=
128π

15
.

7. (25 points) For each of the following vector fields, either find a potential function (i.e., a
function that it is the gradient of) or prove that the vector field is not conservative.

(a). ~F (x, y) = 〈x2 − cos(2y), y3 + 2x sin(2y)〉.
(b). ~G(x, y, z) = 〈2xy − x2, z3, 3yz2〉.

Answer. (a). The 2D curl of ~F is
∂Q

∂x
− ∂P

∂y
= 2 sin(2y)− 2 sin(2y) = 0, on all of R2. Since R

2 is

simply-connected, ~F is conservative, so there is some f with ∇f = ~F .

Then fx = x2 − cos(2y), and so f(x, y) =
x3

3
− x cos(2y) + g(y) for some function g. Therefore

fy = −2x sin(2y) + g′(y), which means g′(y) = y3, and hence we can choose g(y) =
y4

4
. Thus,

f(x, y) =
x3

3
+

y4

4
− x cos(2y) is a potential function for ~F .

(b). We compute curl ~G = 〈Ry − Qz, Pz − Rx, Qx − Py〉 = 〈3z2 − 3z2, 0 − 0, 0 − 2x〉, which is

〈0, 0,−2x〉 6= ~0. Thus, ~G is not conservative.

8. (30 points) Let C be the curve that lies in the surface z = x3 − xy + 2 directly above the

boundary of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1. Compute

∫

C
sin(x2) dx + yz dy − y2 dz, if C is

oriented clockwise when viewed from above.

Answer. Let S be the portion of the surface z = x3 − xy + 2 bounded by C, so that S is
parametrized by ~r(x, y) = 〈x, y, x3−xy+2〉 for (x, y) ∈ [0, 2]×[0, 1]. We have ~rx = 〈1, 0, 3x2−y〉, and



~ry = 〈0, 1,−x〉, so that ~rx×~ry = 〈y−3x2, x, 1〉. However, that vector is pointing upward, which (by
the right hand rule) is the wrong way for the orientation on C; so we use ~ry×~rx = 〈3x2−y,−x,−1〉
instead.
Meanwhile, the vector field ~F = 〈sin(x2), yz,−y2〉 has curl ~F = 〈−2y − y, 0, 0〉 = −3y~i. Thus, by
Stokes’ Theorem,
∫

C

~F · d~r =

∫∫

S
(curl ~F ) · d~S =

∫

2

0

∫

1

0

−3y(3x2 − y) + 0 + 0 dy dx =

∫

2

0

∫

1

0

3y2 − 9x2y dy dx

=

∫

2

0

y3 − 9

2
x2y2

∣

∣

∣

1

y=0

dx =

∫

2

0

1− 9

2
x2 dx = x− 3

2
x3

∣

∣

∣

2

0

= 2− 12− (0 + 0) = −10.

BONUS A. (2 points) Let R be region in the first quadrant of the xy-plane bounded to the
upper right by y = 4/x, to the lower right by y = x, to the lower left by y = 1/x, and to the upper

left by y = 9x. Use the transformation x =

√
u

v
, y = v

√
u to compute

∫∫

R
cos(πxy) dy dx.

Answer. The curve y = 4/x becomes v
√
u = 4v/

√
u, and hence u = 4; similarly, y = 1/x becomes

u = 1. Meanwhile, y = x becomes v
√
u =

√
u/v, and hence v2 = 1, meaning either v = 1 or

v = −1; however, the region R is in the first quadrant and so has x > 0, so that it must be v = 1.
Similarly, y = 9x becomes v = 3. Thus, R is the image of the rectangle S = [1, 4] × [1, 3] in the
uv-plane under the given transformation.
The absolute value of the determinant of the Jacobian is |xuyv − xvyu| = |(1/(2v√u)) · √u −
(−√

u/v2)(v/(2
√
u))| = |1/(2v) + 1/(2v)| = 1/v. Meanwhile, xy = u. Thus, the integral is

∫

4

1

∫

3

1

cos(πu)

v
dv du =

(

ln |v|
∣

∣

∣

3

1

)( 1

π
sin(πu)

∣

∣

∣

4

1

)

= (ln 3− 0)(0− 0) = 0.

BONUS B. (2 points) Let C be the curve in R
3 that starts at the point (0, 4, 2), goes to the

point (2, 0, 0) via ~r(t) = 〈t, 4 − t2, 2 − t〉 for 0 ≤ t ≤ 2; and then goes from (2, 0, 0) to the point
(0, 4, 0) along the arc of the parabola y = 4− x2 in the xy-plane.

Compute

∫

C
cos(lnx) dx+ z dy + y2 dz.

Answer.
[Note: due to a last-minute change I made, the integral in this problem is actually improper, because
cos(lnx) is undefined on the plane x = 0, which includes two of the endpoints of C. Technically
that can be changed by using (ε, 4−ε2, 2−ε) for the starting point, and (ε, 4−ε2, 0) for the ending
point, and then taking the limit as ε ց 0. [And the vertical line segment C ′ that appears below
would go from (ε, 4 − ε2, 0) to (ε, 4 − ε2, 2 − ε).] But, as is common with improper integrals that
converge, it all works if you just compute the thing blindly. So, since I did not intend for the
problem to be that complicated when I wrote it, I awarded full credit for the simplified method in
grading, and I will only do that simplified method here.]
Let C ′ be the line segment from (0, 4, 0) to (0, 4, 2). So C and C ′ together form the boundary
of a surface S which is sort of a triangular slice of the parabolic cylinder y = 4 − x2. Writing

~F = 〈cos(lnx), z, y2〉, Stokes’ Theorem tells us that

∫

C

~F · d~r +
∫

C′

~F · d~r =

∫∫

S
(curl ~F ) · d~S. We

will compute the second and third integrals.
For the second, parametrize C ′ by ~r(t) = 〈0, 4, t〉 for t ∈ [0, 2]. Then ~r ′(t) = ~k, and y = 4 on C ′; so
∫

C′

~F · d~r =

∫

2

0

16 dt = 32.

Meanwhile, we can parametrize S by ~r(x, z) = 〈x, 4 − x2, z〉, for 0 ≤ x ≤ 2 and 0 ≤ z ≤ 2 − x.
We have ~rx = 〈1,−2x, 0〉 and ~rz = 〈0, 0, 1〉, and therefore ~rx × ~rz = 〈−2x,−1, 0〉. However, by the



right hand rule, this is pointing the wrong way, so instead we use ~rz × ~rx = 〈2x, 1, 0〉. We have
curl ~F = 〈2y − 1, 0, 0〉. Thus,
∫∫

S
(curl ~F ) · d~S =

∫

2

0

∫

2−x

0

(2(4− x2)− 1)(2x) dz dx =

∫

2

0

(14x− 4x3)(2− x) dx

=

∫

2

0

28x−14x2−8x3+4x4 dx = 14x2− 14

3
x3−2x4+

4

5
x5

∣

∣

∣

2

0

= 8
(

7− 14

3
−4+

16

5

)

=
8 · 23
15

=
184

15
.

Finally, then, the original integral is the difference of the two we computed; that is,
∫

C

~F · d~r =
184

15
− 32 = −296

15
.

BONUS C. (1 point) Name the largest battle (in terms of numbers of participants and casualties)
in the history of human warfare.

Answer. The Battle (or Siege) of Stalingrad, fought between the Nazis and the Soviets from
July 1942 through February 1943. Casualty estimates on both sides totalled about 2 million. (By
contrast, the Battle of the Bulge, the largest battle involving US forces, had fewer than 200,000
total casualties.)

BONUS D. (1 point) About two weeks ago, a US senator changed political parties. What is
that senator’s name?
Answer. Arlen Specter. (Senator from Pennsylvania. Was a Republican until recently, but now is
a Democrat. Interestingly, he was originally a Democrat long ago but switched to the Republican
party back in 1966.)


