Bio 37 Structural Biology

Williamson Fall, 2009 The first day

Philosophy

- Molecular explanations of biological processes
- Hypotheses no and yes
- Evolution and particulars
- Visual science

A course in the making

The course: The pieces

The Pregnant Pause...

Amino Acid Structure

- α carbon and substituents
- Charged at amino and carboxyl terminal ends (of chains)
- Each aa residue is a dipole, and contributes to the dipole moment of the chain
- Water soluble as monomers, less so in polymer

Un-ionized form of an amino acid

Dipolar ion (or zwitterion) form of an amino acid

Predominant form at pH 1

Predominant form at pH 7

Predominant form at pH 11

The alpha carbon is a chiral center

- The α carbon of all amino acids (except glycine) are chiral (and possibly others in side chain as well.)
- Naturally occurring amino acids are the L stereoisomer.

The sidechains: a quick summary (Thanks, Prof. O'Hara)

Short hand code for the structure of the individual amino acids

Aliphatic Side chains

Val, Leu, and Ile are strongly hydrophobic amino acids

Aromatic Side chains

Sulfur-containing sidechains

Hydroxyl sidechains

...and tyrosine as well

Basic Side chains

Anionic Side Chains & relations

ACIDIC AND BASIC AMINO ACIDS

Name	Polarity	Hydropathy	pK ₁	pK ₂	pK _r
Aspartate Asp- D	+0.80	-3.5	2.09	9.82	3.86 (3.65)
Glutamate Glu- E	+0.77	-3.5	2.19	9.67	4.25
Lysine Lys- K	+1.18	-3.9	2.18	8.95	10.53
Histidine His- H	-0.49	-3.2	1.82	9.17	6.00
Arginine Arg- R	+0.84	-4.5	2.17	9.04	12.5

Polarity Scale: Found in Aqueous environment (+ values)

Found in Hydrophobic environment (- values)

H.R. Guy (1984) Biophys. J. 47 61-70.

Hydropathy Scale: Found in Aqueous environment (- values)

Found in Hydrophobic environment (+ values).

Kyte & Doolittle (1982) J. Mol. Bio. 157, 105-132.

PREDICTED HYDROPHOBIC AMINO ACIDS

Name	Polarity	Hydropathy	pK_1	pK₂	pK _c
Alanine Ala- A	+0.06	+1.8	2.34	9,69	i i
Valine Val- V	-1.09	+4.2	2.32	9.62	
Leucine Leu- L	-1.21	+3.8	2.36	9.60	
Isoleucine Ile- I	-1,31	+4.5	2.36	9.68	
Proline Pro- P	±0.70	-1.6	1.99	10.96	
Phenylalanine Phe- F	-1.68	+2.8	1.83	9.13	
Tryptophan Trp- W	-0.88	-0.9	2.38	9.39	
Methionine Met- M	-1.23	+1.9	2.38	9,21	

PREDICTED HYDROPHILIC AMINO ACIDS

Name	Polarity	Hydropathy	pK ₁	pK ₂	pK _e
Glycine Gly- G	+0.41	-0.4	2.34	9.60	
Serine Ser- S	+0.50	-0.8	2.21	9.15	13.60
Threonine Thr- T	+0.27	-0.7	2.63 (2.11)	10.4 (9.62)	13.60
Cysteine Cys- C	-1.36	+2.5	1.71 (1.96)	10.8 (8.18)	8.3 (10.28)
Tyrosine Tyr- Y	-0.33	-1.3	2.20	9.11	10.5
Asparagine Asn- N	+0.48	-3.5	2.02	8.80	
Glutamine Gln- Q	+0.73	-3.5	2.17	9.13	

The peptide bond

- Two amino acids combine to form a dipeptide, three to form a tripeptide, several to form an oligopeptide, many to form a polypeptide, or protein
- Forward reaction is a dehydration, backward reaction is an hydrolysis
- Note energetics