Directions: Solve any 3 of the following 4 problems.

Problem $\# \mathbf{1}$ For any $A \subset \mathbb{Z}^{+}$, define $\mathbf{K} A=A$ if A is finite and $\mathbf{K} A=\mathbb{Z}^{+}$otherwise. Prove that \mathbf{K} is a closure operator on \mathbb{Z}^{+}.

Problem \#1 (Extra credit) Prove that \mathbf{K} does not correspond to a metric.

Problem \#2 Let $X=\mathbb{R}$ with the topology corresponding to the following closure operator: $\mathbf{K}_{X} A=A \cup\{0\}$ if A is nonempty and \emptyset otherwise. Similarly, let $Y=\mathbb{R}$ with the topology from the following closure operator: $\mathbf{K}_{Y} A=A \cup\{1\}$ if A is nonempty and \emptyset otherwise. You may assume that \mathbf{K}_{X} and \mathbf{K}_{Y} are closure operators on X and Y, respectively.
(a) Prove $\left(X, \mathbf{K}_{X}\right)$ and $\left(Y, \mathbf{K}_{Y}\right)$ are both connected.
(b) Is the function $f: X \rightarrow Y$ defined by $f(x)=x$ continuous (with respect to the topologies above)? Prove your answer.
(c) Give a continuous function $g: X \rightarrow Y$ that agrees with f at all but one point. Prove your g is continuous, but not onto or 1-1.
(d) Prove there is a continuous function $h: X \rightarrow Y$ that is onto and 1-1.

Problem \#3 Let X be any set with the discrete topology.
(a) Let Y be any set, and let f be any function from X to Y. Prove f is continuous.
(b) For any $p \in X$, define $g_{p}: X \rightarrow X$ by $g_{p}(x)=p$ for all $x \in X$. Prove g_{p} is a contraction.
(c) Prove every contraction on X is of the form g_{p} for some $p \in X$.
(d) Conclude that any contraction of a discrete space has a unique fixed point.

Problem \#4 Given $A \subset \mathbb{R}$, let $f(x)=(x+\sqrt{2}) / 2$ for all $x \in A$.
(a) Is f a contraction for any of the following sets? $A=\mathbb{Q}, A=\mathbb{R}-\mathbb{Q}, A=\mathbb{R}$.
(b) If you said f was a contraction for any of the sets in part (a), prove your assertion(s).
(c) Find all fixed points for the set(s) in part (b). Prove you have provided all of them.

