Math 28 Spring 2008: Exam 1

Instructions: Each problem is scored out of 10 points for a total of 50 points. You may not use any outside materials(eg. notes or calculators). You have 50 minutes to complete this exam.

Problem 1. Let $A \subseteq \mathbb{R}$ be bounded above. Show that $\sup(A) \in \overline{A}$.

Proof. Let A be bounded above and let $s = \sup(A)$ which exists by the completeness of \mathbb{R} . Then we need to see that $s \in \overline{A} = A \cup L$ where L is the set of limit points of A. Since s can either be in A or not in A, we examine each case separately.

If $s \in A$ then clearly $s \in A$.

If $s \notin A$, then we will show that s is a limit point. Let $\epsilon > 0$, then by the characterization of supremum, there exists an $a \in A$ such that $s - \epsilon < a$. Since $s \notin A$ we have $a \neq s$ and hence $V_{\epsilon}(s)$ intersects A in a point not s. Therefore, s is a limit point of A and hence $s \in \overline{A}$.

Problem 2. Let $(a_n) \to a$ and $(b_n) \to b$ be convergent sequences. Show directly that $(a_n - b_n) \to a - b$. (i.e. without using the Algebraic Limit theorem).

Proof. We know that $(b_n) \to b$ and hence for all $\epsilon > 0 \exists N_1 \in \mathbb{N}$ such that for all $n \geq N_1$ we have $|b_n - b| < \frac{\epsilon}{2}$. So we also have that for all $n \geq N_1$ we have

$$|-b_n - (-b)| = |b - b_n| = |b_n - b| < \frac{\epsilon}{2}$$

Similarly, since $(a_n) \to a$ (and the same $\epsilon > 0$) there exists $N_2 \in \mathbb{N}$ such that

$$|a_n - a| < \frac{\epsilon}{2} \quad \forall n \ge N_2$$

Let $N = \max(N_1, N_2)$. Then for all $n \ge N$ we have

$$\begin{aligned} |(a_n - b_n) - (a - b)| &= |(a_n - a) - (b_n - b)| \\ &= |(a_n - a) + (b - b_n)| \\ &\leq |a_n - a| + |b - b_n| \quad \text{(Triangle Inequality)} \\ &= |a_n - a| + |b_n - b| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Problem 3.

- (a) State the definition of a compact set and the characterization of compact sets by the Heine-Borel Theorem.
- (b) Show that the union of finitely many compact sets is compact.

Proof.

- (a) Compact sets are sets such that every sequence of elements contained in the set has a subsequence which converges to a limit which is in the set. The Heine-Borel Theorem states that a set is compact if and only if it is closed and bounded.
- (b) Let $K_i \subset \mathbb{R}$ for $1 \leq i \leq n$ be compact sets where $n \in \mathbb{N}$. Since a finite union of closed sets is closed, we have that $K = \bigcup_{i=1}^{n} K_i$ is closed. Since K_i is compact for $1 \leq i \leq n$ it is bounded, so there exists $M_i \in \mathbb{R}$ such that $|a| \leq M_i$ for all $a \in K_i$ for $1 \leq i \leq n$. Let $M = \max(M_1, \ldots, M_n)$. The maximum of a finite set exists, so M exists. Consider $a \in K$. Then $a \in K_i$ for some i and hence $|a| \leq M_i \leq M$. So K is bounded. Using the Henie-Borel theorem K is compact since it is closed and bounded.

Or using open covers: a subset of \mathbb{R} is compact if and only if every open cover has a finite subcover. Let $\{O_j\}$ be an open cover of $K = \bigcup_{i=1}^n K_i$. Then there exists a finite collection $\{O_{k_i}\}_{k_i=1}^{a_i}$ for each K_i . Hence the collection $\bigcup_{i=1}^n \{O_{k_i}\}_{k_i=1}^{a_i}$ covers all of the K_i and hence covers K. Since the finite union of a finite number of objects is finite. This is a finite subcover. So, by the characterization of compact, K is compact.

Problem 4. Prove the $\sum_{n=1}^{\infty} a_n$ is convergent if and only if for any $m \in \mathbb{N}$ $\sum_{n=1}^{\infty} a_{m+n}$ is convergent. Moreover, $\sum_{n=1}^{\infty} a_n$ converges to $a_1 + \cdots + a_m + \sum_{n=1}^{\infty} a_{n+m}$.

Proof. Let $m \in \mathbb{N}$. Let S_n be the *n*th partial sum of $\sum_{n=1}^{\infty} a_n$ and let T_n be the *n*th partial sum of $\sum_{n=1}^{\infty} a_{m+n}$.

First showing (\Rightarrow) : $\sum a_n$ converges if and only if (S_n) is Cauchy. So we have for all $n, k \ge N \in \mathbb{N}$ we have

$$|S_n - S_k| = |a_{k+1} + \dots + a_n| < \epsilon$$

Note also that n + m, k + m satisfy $n + m, k + m \ge N$ and hence

$$|T_n - T_k| = |a_{k+m+1} + \dots + a_{n+m}| < \epsilon.$$

Therefore (T_n) is Cauchy and hence $\sum_{n=1}^{\infty} a_{m+n}$ converges. (\Leftarrow) : Conversely, if $n + m, k + m \ge N$ implies

$$|T_n - T_k| = |a_{k+m+1} + \dots + a_{n+m}| < \epsilon$$

then $n, k \ge N - m$ implies

$$|S_n - S_k| = |a_{k+1} + \dots + a_n| < \epsilon$$

and hence (S_n) is Cauchy. Note that we know N > m since $n, k \in \mathbb{N}$.

For the value of convergence we simply look at the terms of the sequence.

$$\sum_{n=1}^{\infty} a_{n+m} = a_1 + \dots + a_m + \sum_{n=1}^{\infty} a_n.$$

So if $\sum_{n=1}^{\infty} a_{n+m} = A$ and $\sum_{n=1}^{\infty} a_n = B$, then we have

$$A = a_1 + \dots + a_m + B$$

Problem 5.

- (a) State the Monotone Converge Theorem.
- (b) Define $a_1 = 1$ and $a_n = 3 \frac{1}{a_{n-1}}$ for $n \ge 2$. Determine the convergence or divergence of the sequence (a_n) .

Proof.

- (a) The Monotone Convergence theorem says that every bounded monotonic sequence is convergent.
- (b) We will show the sequence is increasing and bounded.

For increasing we proceed by induction. We have $a_1 = 1$ and $a_2 = 2$ and hence the base case $a_2 > a_1$. So assume $a_n > a_{n-1}$ and hence $\frac{1}{a_{n-1}} > \frac{1}{a_n}$ for all $n \le N$. Then consider

$$a_{n+1} = 3 - \frac{1}{a_n} > 3 - \frac{1}{a_{n-1}} = a_n.$$

So the sequence is increasing and hence monotone.

For boundedness, we know that $a_1 = 1$ and (a_n) is increasing and will show that $1 \le a_n \le 3$ for all $n \in \mathbb{N}$. Consider

$$a_{n+1} = 3 - \frac{1}{a_n}$$

Since a_n in increasing and at least 1, the upper bound of 3 holds since we are always subtracting a positive quantity from 3. Since $a_1 = 1$ and (a_n) is increasing, the lower bound holds.