\qquad

SAMPLE EXAM FALL 2012 MINUS Q. II.

Chemistry 11, Fall 2006
Exam II

November 16, 2006
7:30 PM - 9:30 PM
As always, full credit will not be given unless you have written down the reasoning or calculations you used to obtain the correct answer. Work on the back of pages will not be graded! Pay attention to significant figures. Please check now that your exam has twelve pages (including this one). A periodic table and a list of formulas are attached at the back of the exam. If you finish early, just leave your completed exam on the front desk. If you have a question, we will be up on the fifth floor. You have two hours to complete this exam.

It is against the honor code at Amherst College to either give or receive help on this exam. The work you turn in must be yours and yours alone.

Extra Credit (circle the correct answer)
Perchance you remember the stunning appearance of GN Lewis in our class last Wednesday. His words, reprinted in your powerpoint handout for that day, spoke about his attempts to have communicated the "soul of chemistry." During his speech, GN Lewis invoked the name of another, "Asmodeus", from whom he demanded a test tube. Who/What is(was) Asmodeus?
a) GN Lewis's graduate student
b) According to ancient texts, a demon who was repelled by the fumes of fish liver
c) Professor Rick Griffith's name in his former life
d) Professor O'Hara's nickname

Question	Points	Score
XC	02	
I	20	
II	24	
III	20	
IV	20	
V	16	
Total	102	

I. Atomic and Periodic Properties: Newly Synthesized Element 118 (20 points)

1. The synthesis of element 118 was reported recently by a collaborative team of 30 scientists from the US and Russia (Physical Review C, October 2006.)
a. Write down the ground state electron configuration for the newly synthesized element. Use the abbreviation scheme in which inner core electrons are represented uisng the appropriate noble gas...for example, the electron configuration for Li is $[\mathrm{He}] 2 \mathrm{~s}^{1}$.
b. To which period (row) and group (column) do this new element belong?
2. Order the elements (some have yet to be synthesized) with the following atomic numbers $115,116,117,118,119,120$ from SMALLEST to LARGEST \qquad
a. Atomic radii
b. Ionization energy
c. Magnetic spin: (number of unpaired electrons)
3. Elements $115^{-3}, 116^{-2}, 117^{-1}, 118,119^{+}$, and 120^{+2} are isoelectronic. Arrange these elements from SMALLEST to LARGEST.............
a. Atomic or ionic radii
b. Ionization energy
c. Electron Affinity (arrange from most negative to most positive)
4. Grab bag of multielectron atom questions.
a. Which element in the fourth row (K to $\mathrm{Kr} \mathrm{)} \mathrm{would} \mathrm{have} \mathrm{the} \mathrm{lowest} \mathrm{second}$ ionization energy and why? Remember: $2^{\text {nd }}$ Ionization Energy Atom ${ }^{+}$------> Atom ${ }^{++}+\mathrm{e}^{-}$
b. Which element in Group 17 (the halogens) would require the greatest energy photon to remove its 1 s electron. Why?
c. Which is the first element in which the $\mathrm{n}=4$ shell is COMPLETELY filled?

Question II. Lewis Structures, VSEPR, dipoles (24)

Consider the following four molecules and molecular ions : POCl (phosporus monochlorine monoxide); PH_{3} (phosphine); POCl_{3} (phosphorus trichlorine monoxide); PFCl_{4} (phosphorus monofluorine tetrachlorine):

On the following page:

1. Draw the best Lewis structure clearly indicating the total number of valence electrons, all bonding and unshared electrons, and a formal charge for ALL atoms.
2. Next to the Lewis structure, sketch a VSEPR 3-D representation of the molecule. Indicate the steric number of the central P atom (steric number is the number of bonded atoms plus lone pairs), the geometry of the molecule, and the bond angles.
3. The electronegativites of $\mathrm{P}, \mathrm{O}, \mathrm{Cl}, \mathrm{H}$ and F are 2.2, 3.4, 3.2, 2.2 and 4.0. Indicate on your VSEPR sketch both individual bond dipoles (blue pen) and molecular dipoles (red pen) for each species.

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive...?"

Question III (Quantum Mechanics) 20 points

1. Write down a plausible set of four quantum numbers for each electron in the following atoms or ions. For each question, the number of electrons for which quantum numbers are requested is shown in parentheses. For some electrons, more than one correct set is possible. You need provide only one correct set for each electron. The ground state of hydrogen is done for you as an example.
a. The ground state of Hydrogen (1)
b. The lowest energy excited state of helium(2)
c. The ground state of lithium (3)
d. The ground state of Li^{+2} (1)
e. The valence electrons in the ground state of carbon (4)
2. This question focuses properties of the fourth shell (family of orbitals with $n=4$).
a. In the $\mathrm{n}=4$ shell Indicate the number of

Orbitals \qquad
Electrons
nodes/orbital
\qquad
\qquad
b. Use this space to draw the radial functions and the radial probability distributions for $4 \mathrm{~s}, 4 \mathrm{p}$ and 4 d orbitals for the hydrogen atom (three graphs for each here six total). Remember to label your axes and indicate radial nodes and most probable distances on the radial distributions.
\qquad

\qquad
c. Use this space to sketch orbital pictures for each of the $4 \mathrm{~s}, 4 \mathrm{p}_{\mathrm{z}}$, and $4 \mathrm{dx} \mathrm{x}^{2}-\mathrm{y}^{2}$ orbitals (your answer here should show three figures, each sketched along a set of x, y, and z axes). Note phases, nodal planes, radial nodes and axial orientation if appropriate. Be sure to label your axes.

Question IV. Energy Level Diagrams..... 20 points

1. The first ionization energies of helium, lithium, and carbon are $2372.3,520.23$, and 1086.4 $\mathrm{kJ} /$ mole.
a. Express these ionization energies as joules/atom.
b. Identify the orbital of the valence (highest energy) electron in these atoms (i.e. 3 p or 2 s)
c. What is the energy of the valence orbital in each of the atoms above?
2. Helium can be excited from its ground state to its first excited state with an electric discharge (see problem IIIIb). When this excited state helium relaxes back down to the ground state it can emit a photon of wavelength 125 nm .
a. What is the energy of a photon with that wavelength?
b. What does the energy of this photon represent with regards to the energies of the orbitals in Helium.
3. Consider the atoms in Question III, 1a: the hydrogen atom, a helium atom in its lowest energy excited state, the ground states of lithium and the lithium ${ }^{+2}$ ion, and finally, a ground state carbon atom. The energy level diagram for the energy levels in hydrogen up to $\mathrm{n}=2$ is shown below with its electron in the proper orbital. In the columns adjacent to the diagram for hydrogen, draw your own energy level diagrams for the $\mathrm{n}=1$ and $\mathrm{n}=2$ levels for helium, lithium, lithium ${ }^{+2}$, and carbon as accurately as you can, and then populate those orbitals with the appropriate number of electrons. It is possible to calculate the exact energies for eight of these levels from information in this exam.

V Baker's Street Dozen Lab (16 points)

You have signed up to be a TA next semester, and Professor Sanborn gives you the answer key to the Baker's Street Half-Dozen lab. The six solutions are labeled in lab only as A-F. Your answer key tells you that A is silver nitrate, B is sodium chloride, C is sodium hydroxide, D is nitric acid, E is hydrochloric acid, and F is sodium carbonate, and each is 0.1 M .

1. Write out the chemical formulas of the six solutions
2. Predict the approximate pH of each solution.
3. Fill out the reactivity chart so that you'll be ready for your students. Record what your students will observe i.e. "milky white precipitate or "bubbles formed." Write "NR" if no reaction occurs.

	B	C	D	E	F
A					
B					
C					
D					
E					

Write out an explanation for how the identification is made for each unknown to help you explain to your students.
A.
B.
C.
D.
E.
F.

Assorted Equations, Constants, and Conversion Factors

Wavelength, frequency, speed relation for waves: $\quad \lambda \nu=\mathrm{c}$
Photon energy: $\quad \mathrm{E}_{\text {photon }}=\mathrm{h} v=\frac{\mathrm{hc}}{\lambda}$
Photoelectric effect: $\quad \mathrm{E}_{\left.\text {kinetic (jejected e }{ }^{-}\right)}=\mathrm{E}_{\text {photon }}-\Phi=\mathrm{h} \boldsymbol{v}-\mathrm{h} \nu_{\text {。 }}$
Kinetic energy: $\quad \mathrm{E}_{\text {kinetic }}=\frac{1}{2} \mathrm{mv}^{2}$
deBroglie wavelength: $\quad \lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\mathrm{mv}}$
Heisenberg's uncertainty principle: $\quad \Delta p \times \Delta x \geq \frac{h}{4 \pi} \quad$ or $\quad m \Delta v \times \Delta x \geq \frac{h}{4 \pi}$
Energy levels of a one-electron atom: $\quad E_{n}=\left(-2.178 \times 10^{-18} \mathrm{~J}\right)\left(\frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}\right)$

$$
\Delta \mathrm{E}=\left(-2.178 \times 10^{-18} \mathrm{~J}\right)\left(\mathrm{Z}^{2}\right)\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right)
$$

Avogadro's number: $\quad \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Speed of light: $\quad c=2.9979 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant: $\quad \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J}$ s
Fundamental charge: $\quad \mathrm{e}=1.60218 \times 10^{-19} \mathrm{C}$
Proton mass: $\quad m_{p}=1.673 \times 10^{-27} \mathrm{~kg}$
Neutron mass: $\quad \mathrm{m}_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}$
Electron mass: $\quad m_{e}=9.109 \times 10^{-31} \mathrm{~kg}$
$1 \mathrm{~kg}=10^{3} \mathrm{~g}$
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
$1 \mathrm{~J}=1 \mathrm{Nm}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
$1 \mathrm{~kJ}=10^{3} \mathrm{~J}$

 quifs

［69z］	［89z］	［Lsz］	［zsz］	［LIS］	［ $\llcorner\triangleright$ ］	$[\angle \triangleright て]$	［ $¢ \downarrow$ ¢］	［ゅャて］	［Lعz］	80＇8\＆z	ャ0＇1Ez	ャ0＇Z\＆Z	［LZz］	spiou！foe＊＊
ON	PW	$\mathbf{U N}_{ \pm}$		10	$y 8$	U?	UV	กd	$d \mathrm{~N}$	\cap	Pd	41	5%	
$\begin{gathered} \mathrm{ZOL} \\ \text { wn!leqou } \end{gathered}$	LOL шп！\wedge ө｜өрияш	$\begin{gathered} 001 \\ \text { wn! } \\ \hline \end{gathered}$	66 wn！̣u｜ęsuịe		$\underset{\text { wn\#өxגeq }}{\angle 6}$	$\begin{gathered} 96 \\ \text { wnuno } \end{gathered}$	S6 un！pueus	76 winjuoinid	ع6 wn！un！ideu	$\begin{gathered} \text { Z6 } \\ \text { wnuean } \end{gathered}$	16 	$\begin{gathered} 06 \\ \text { wпиои! } \end{gathered}$	$\begin{gathered} 68 \\ \text { un!uploe } \end{gathered}$	
＋0＇ELL	86＇891	9Z＇L91	E6＇t91	0s＇291	ع6＇8S！	SZ＇LS！	96^{\prime}＇LS	$98^{\circ} 091$	［sヶb］	カでカカレ	160071	て1゚0ャ1	16.881	
q人		d크	$O H$			05	กㄹ	US	UUd		ded	00	2	spioueyıuel＊$_{*}$
$\underset{\text { un!quнк }}{02}$	$\begin{gathered} 69 \\ \text { wn!\|nul } \end{gathered}$	$\begin{gathered} 89 \\ \text { wn! } \end{gathered}$	$\begin{gathered} \angle 9 \\ \text { wn! }(\underset{1}{ } \text { 으 } \\ \hline \end{gathered}$		$\begin{gathered} \mathbf{S 9} \\ \text { wn\|que\| } \end{gathered}$	79 wn！u！lopeb	$\begin{gathered} \text { \&9 } \\ \text { wnidone } \end{gathered}$	$Z 9$ wnиemes	19 шп！ирешола	09 wn！uкровu	$\underset{\text { un!w수oesesd }}{6 \mathrm{~S}}$	$\begin{gathered} 8 \mathrm{~S} \\ \text { шกиео } \end{gathered}$	$\begin{gathered} \text { LS } \\ \text { unиевие } \end{gathered}$	

				［68z］ bnn ャレレ wnipenbunun	［ 48 ］ ¥nへ عレ wnypunun	［98z］ qnก てい wniqunun		［18z］ $S \square$ OU！ un！peyswep		$\begin{gathered} \text { [69Z] } \\ S H / H \\ 80 \downarrow \\ \text { wn!ssey } \end{gathered}$	$\begin{aligned} & \text { [t92] } \\ & \text { 48 } \\ & \text { Lol } \\ & \text { wn!ч⿺a } \end{aligned}$		［z9Z］ SOL unjuqnp			$\begin{gathered} * * \\ \text { zOl-68 } \end{gathered}$	$\begin{gathered} \text { [9zz] } \\ \mathrm{Py} \\ 88 \\ \text { wn!pes } \\ \hline \end{gathered}$		
［zzz］	［0เ乙］	［60Z］	86．802	て＇LOZ	$88^{\prime}+0$ O	$6^{6}{ }^{\circ} 002$	L6．${ }^{\text {261 }}$	80＇ 961	てZ＇Z61	£z＇061	l2＇98！	七8＇£8।	96．081	$6 \mathrm{~F}^{\circ} 8 \mathrm{LL}$	$\angle 6^{\prime} \dagger \angle 1$		ع̇＇LE।	16＇Z81	
Uy	7%	Od	18	9d	I	OH	$n \nabla$	$+d$	$\\|$	SO	OH	M	$e 1$	1H	n7	＊	P8	50	
98 иоре，	$\underset{\text { euplise }}{\mathbf{S 8}}$	$\stackrel{\downarrow 8}{\text { unjuojod }}$	$\underset{\text { yınus\|a }}{\text { £8 }}$	$\begin{gathered} 28 \\ \text { peej } \end{gathered}$	$\underset{\text { wn!\|еч! }}{18}$	$\underset{\text { cinojew }}{08}$	$\begin{gathered} 6 L \\ \text { p1 } 106 \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ \text { wnunge\|d } \end{gathered}$	$\underset{\text { wnippu! }}{L L}$	$\stackrel{9 L}{\text { wn! }}$	$\underset{\text { wn!ueч }}{\text { SL }}$	$\begin{gathered} \text { サL } \\ \text { uejsbun } \end{gathered}$	$\underset{\text { wn\|eque: }}{\varepsilon L}$	ZL wn！ujey	$\underset{\substack{1 / 2 \\ \text { wneenn }}}{\text { and }}$	0L－LS	$\underset{\text { wnueq }}{9 \mathrm{~g}}$	$\underset{\text { wn!se日 }}{\mathbf{S S}}$	
$6 \chi^{\prime} 181$	06＇9Z1	$09^{\circ} \mathrm{LZ}$	9L＇LZし	1／2＇1	28%－	しがてい	L8＇LOL	Z7＇901	$16^{\prime} \mathrm{ZOL}$	LO＇LOL	［86］	${ }^{\text {¢ } 6}$＇56	$906^{\prime} \mathrm{Z6}$	ャマて＇16	906 ＇88		$29^{\prime} \angle 8$	89ヵ＇ 58	
$\theta \mathrm{K}$	$\\|$	$\theta 1$	$9 S$	$4 S$	U1	10	6%	0 O	पع	ny	01	OM	9N				$1 S$	98	
∇G uouex	\＆S өulpo！		$\begin{gathered} \text { LS } \\ \text { Kuowgue } \end{gathered}$	OS	67 wnipu｜	$\begin{gathered} 8\rangle \\ \text { wn\|uрре } \end{gathered}$	$\underset{\text { denill }}{\operatorname{Li}}$		St шпирроч．	切 wnjuaunns	$\varepsilon \downarrow$ шпйеичоө：	$\begin{gathered} Z \hbar \\ \text { unuepq치우 } \end{gathered}$			6ε шกинк		$\begin{gathered} 8 \varepsilon \\ \text { un!uogs } \end{gathered}$	$\underset{\text { wnipp\|qnı }}{\angle \varepsilon}$	
08＇ 8	506．6L	$96^{\prime} 81$	てZ6＇\downarrow	$19^{\circ} \mathrm{ZL}$	\＆ZL＇69	$68: 99$	$979 \% 9$	869＇89	ع¢6＇89	¢ヶ¢＇ss	886＇ts	966° LG	27609	$\left.\angle 98^{\circ} \angle\right\rangle$	996 \square°		820＇0才	$860^{\circ} 6 \varepsilon$	
$d y$	18		$S V$	05	85	$U Z$	10				$U \\|$	10					120	M	
$\begin{gathered} 9 \varepsilon \\ \text { uold } / x y \end{gathered}$	$\underset{\text { өu!worq }}{\mathbf{S \varepsilon}}$	$\begin{gathered} \downarrow \varepsilon \\ \text { wnjue\|es } \\ \hline \end{gathered}$	£ गְues.e	て\＆ шпииешле6	เع шท！｜｜e6	$\begin{gathered} 0 \varepsilon \\ \text { ou!z } \\ \hline \end{gathered}$	$6 Z$ Jəddo	$\begin{gathered} 82 \\ \text { \| } \begin{array}{c} 80!u \end{array} \\ \hline \end{gathered}$	$\underset{\text { Heqoo }}{L Z}$	$\begin{gathered} 92 \\ \text { uoun } \end{gathered}$	乌Z өsөue6ueu	$\begin{gathered} \downarrow \boldsymbol{Z} \\ \text { шп!шоур } \end{gathered}$	ع乙 шn！peue＾		$\underset{\text { unjpuess }}{\downarrow Z}$		$\underset{\text { un!p, }}{0 \Sigma}$	6 wnissejod	
$\begin{aligned} & 8 \triangleright 6 \cdot 6 \varepsilon \\ & d V / \end{aligned}$	$\begin{gathered} \varepsilon s t \cdot \mathrm{~s} \\ 10 \end{gathered}$	$990^{\prime} Z \varepsilon$	$\dagger \angle 60 \varepsilon$	$\begin{aligned} & 98082 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 28892 \\ & \\| V \end{aligned}$												GO\＆＇ゅ乙	066^{\prime} ZZ EN	
81 u06رe		91． נnyns	S． snooydsoud	カl voo!\|l		\＆। wnulumaje												$\begin{gathered} \text { Zl } \\ \text { uniseubew } \end{gathered}$	$\underset{\text { unipos }}{\text { LI }}$
08102	866．81	$666^{\circ} \mathrm{S}$	LOO＇tı	H0＇z1	11801							（ssem enple｜	ueaw） 146				2Z10＇6	$156 \cdot 9$	
$O N$	\pm	0	\mathbf{N}		8							10							
$\begin{gathered} \text { 01 } \\ \text { иоөu } \end{gathered}$	$\begin{gathered} 6 \\ \text { eupony } \end{gathered}$	$\begin{gathered} 8 \\ \cup \in 6 К \times 0 \\ \hline \end{gathered}$	$\underset{\sim}{L}$	$\begin{gathered} 9 \\ \text { иочеอ } \end{gathered}$	$\begin{gathered} \mathbf{G} \\ 00.0 \mathrm{q} \end{gathered}$							$\begin{array}{r} \text { deq } \\ 0 \end{array}$	unu э！ய швии јиөшө｜	оұе				$\underset{\text { wn! }}{\varepsilon}$	
$9200^{\circ} \mathrm{t}$														：Kө才				6L00＇t	
θH																		H	
$\underset{\text { wn! }}{\boldsymbol{\tau}}$																		ueßo．p <4	
81	LV	91	Gl	カレ	$\varepsilon レ$	で	い	01	6	8	L	9	G	†	ε		Z	\downarrow	

