page	1 (15)	
	2 (30)	total (250)
	3 (45)	total (230)
	4 (45)	chk
	5 (35)	
	6 (30)	
	7 (35)	
	8 (20)	Please write in this space not

1. (15 points) Summer is just around the corner. Let's make liquid nitrogen ice cream. (Well, we'll have to approximate ice cream as frozen water.) How many grams of liquid N₂ would be required to freeze 100 g of water, initially at 25.0 °C? Assume that the all the water ends up as ice at 0 °C. Also assume that the liquid nitrogen is at its boiling point, 77.3 K, and the cold gas formed when it vaporizes escapes immediately and is unable to provide any cooling. (Water's heat capacity is in the table provided. Water's enthalpy of fusion is 6.01 kJ/mol, and nitrogen's enthalpy of vaporization is 5.56 kJ/mol. Molecular weights are 18.0 g/mol for H₂O and 28.0 g/mol for N₂.)

$$N_2 \log 3 \cos \frac{1}{100} = \frac{1000 (4,18 \% (25 \%) + (1000) (1000) (6,01 \% (6,01))}{1800} = \frac{1000 (4,18 \% (25 \%) + (1000) (1000) (6,01 \% (6,01))}{1800} = \frac{1000 (4,18 \% (25 \%) + (1000) (1000) (1000) (6,01 \% (6,01))}{1800} = \frac{1000 (4,18 \% (25 \%) + (1000) (1000) (1000) (6,01 \% (6,01))}{1800} = \frac{1000 (4,18 \% (25 \%) + (1000) (1000) (1000) (6,01 \% (6,01))}{1800} = \frac{1000 (4,18 \% (25 \%) + (1000) (1000) (1000) (6,01 \% (6,01))}{1800} = \frac{1000 (4,18 \% (25 \%) + (1000) (1000) (1000) (6,01 \% (6,01))}{1800} = \frac{1000 (4,18 \% (25 \%) + (1000) (10$$

	CH ₃	CH ₂ CH ₂ CH ₂ -Br	CH₃CH₂CH₂CH₂−CI	CH ₃ CH ₂ CH ₂ CH ₂ -OH	
	$\Delta \mathrm{H}^{\circ}{}_{\mathrm{vap}}$:	36.7	33.6	51 kJ/mol	
5	(a) Explain compounds.			ich higher ΔH°_{vap} than the other two many the dipole and the dipole when the others.	iction
4	(b) Explain	briefly why the firs	st compound has a higher AH°.		
4		ohol also has a high (S° _{vap} ≈97 J/molK	for each) Why?	wap = 131 J/molK) than the other two	
5	, ,	r than the "straight	chain" isomers shown above. Less surface area van der Waals	,	v
	3. (12 poin basic, or neu	•	npound below is dissolved in	water, would the solution be acidic,	
3			rentral		
3	(b) (CH ₃) ₂ C	CHCO ₂ K {-co{ k#	basic		
3	(c) (CH ₃) ₃ N	(CH)), &—H	a acidre		
3	(d) NaNH ₂	of NHz +Hz Showe base	~10072 MH3 + H0-	basie page 2	30

2. (18 points) The standard enthalpies of vaporization of 1-bromobutane, 1-chlorobutane, and 1-butanol are given below.

4. (15 points) Which of the following substances can reduce aqueous Cr³⁺ to chromium metal under standard conditions? (circle)

each Fe2(SO4)3 MgCl2 NaH Mn CuBr Au(NO3)3

each word and not not ox to o

5. (30 points) Methylamine, CH_3NH_2 , has $K_b = 4.40 \times 10^{-4}$. (a) Write the equilibrium that defines the K_b , showing all structures clearly.

curved away of cos M-x

CH3-NH2 + H-OH = CH3-NH3 + OH

(b) Calculate the pH of a solution made by dissolving 0.00800 mol of methylamine in 1.00 L of water.

 $4.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = \frac{x^{3}}{0.008 - x} = 7 \times = 0.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = 1.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = 1.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = 1.001876 - 9.7 \text{ n.f.}$ $1.40 \times 10^{-4} = 1.001876 - 9.7 \text{ n.f.}$

(c) The solution from part b is titrated with 0.100 M hydrochloric acid. What volume of aq. HCl is required to reach the equivalence point?

0,00800 md x 1 L = 0.08001 = 80,0 ml

(d) What are the major species present at the equivalence point, and what are their concentrations? Draw all structures clearly.

CH3NH3 CIE + maker cmc. = 0,00800ml = 0,00741 M

(e) What is the pH of the solution at the equivalence point?

У

5

3

4

5

 $K_{a} = 7.77 \times 10^{-11} \quad \text{consodu cH}_{3} \text{ MH}_{3} \quad \text{dissoc, as usual}$ $K_{a} = \frac{K^{2}}{0.00741 - X} \quad \Rightarrow \quad \times = \{1+^{+}\} = 4, 104 \times 10^{-}\} M$ $V_{a} = \frac{K^{2}}{0.00741 - X} \quad \Rightarrow \quad \times = \{1+^{+}\} = 4, 104 \times 10^{-}\} M$ $V_{b} = 6,39 \quad \text{(ar)}$ $V_{b} = 6,39 \quad \text{(bf)} \quad \text{(bf)}$ $V_{b} = 6,39 \quad \text{(bf)} \quad \text{(bf)}$ $V_{b} = 6,39 \quad \text{(bf)} \quad \text{(bf)}$

(f) What was the pH of the solution when exactly half of the required amount of aq. HCl had been added? $\rho H = \rho K_{G}$

10.64

6. (13 points) You may have noticed the following trend within the K _b values listed in the table.	
H_3C-NH_2 $K_b = 4.4 \times 10^{-4}$ H_2N-NH_2 $K_b = 3.0 \times 10^{-6}$ $HO-NH_2$ $K_b = 1.1 \times 10^{-8}$	
(a) In the process that defines K_b , is the NH_2 group in these compounds protonated or deprotonated?	
(b) Which compound above is the strongest base, and which is the weakest base? $CH_3 WH_2$ 13	
(c) Is K_b a thermodynamic or a kinetic parameter? The modynamic ! 1+0 NH2 13 weaks	23/
(d) Provide a brief structural explanation for the variation in K _b above.	
when -NHz group 13 protomaked, the electronegative	
neighborne atom withdraws e-dusity han the	
when -NHz group 13 protonated, the electronegative neighborry atom withdraws e-dusity han the positive N, destabilizing the conj. acid. That is,	
making HO-RH is harder than making CH3-NH3	
7. (32 points) (a) Hydrazine, NH ₂ NH ₂ , and formic acid, HCO ₂ H, undergo an acid-base reaction. Illustrate this reaction in the space below, being sure to show all structures clearly. H-CO-H= H-N-NH H-N-NH	THE
ved of the Ka =	.a
H-CO-H-W-NH2 = H-CO-H-CO-H-CO-H-CO-H-CO-H-CO-H-CO-H-CO	•
(b) Label the acids with their K_a values.	
(c) Label the stronger acid and the weaker acid.	
(d) Label the stronger base and the weaker base.	
(e) Based on your stronger/weaker labels, which side of the reaction is favored at equilibrium?	
(f) What is K_{eq} for the reaction? $K_{eq} = \frac{1.8 \times 10^{-9}}{3.3 \times 10^{-9}} = 5.4 \times 10^{4}$	
(g) What is ΔG° at 25 °C?	

ζ

(h) Suggest two experimental methods by which one could determine the ΔH° for the reaction.

measure ker is temp (plot In Ker is 1/4 => 014° from slape)
measure a4° by colorimetry

page 4

06° = - RTINKER = - 27,0 Kl/mel

- 9. (30 points) An electrochemical cell is constructed with a zinc electrode and aqueous $ZnCl_2$ in one compartment and a chromium electrode and aqueous $Cr_2(SO_4)_3$ in the other. Both salts are very soluble in water.
- (a) Write the balanced redox reaction. The sulfate and chloride ions do not participate in the redox chemistry and may be omitted.

5

3

10

6

- (b) What is the standard cell potential, ε° , for the reaction as you wrote it? $\varepsilon^{\circ} = + \circ, 03$
- (c) Sketch the electrochemical cell. Indicate the direction of electron flow under standard conditions, and label the anode and the cathode. If a salt bridge is required, show it and suggest what it might contain.

(d) What is the cell potential when the concentration of $ZnCl_2$ is 0.90 M and the concentration of Cr^{3+} is 4.0×10^{-5} M? Which direction would the cell run?

$$\mathcal{E} = 0.03 \, V - \frac{0.0257 \, V}{6} \ln \left(\frac{(2n^{2+})^3}{(c^{3+})^2} \right) - 4.0 \times 10^{-3} \, M$$

$$= -0.055 \, V, \quad \text{(all would run "backward"} (-0.06 \, V)$$

(e) What is the equilibrium concentration of Cr^{3+} when $[Zn^{2+}] = 1.00 M$?

(e) What is the equilibrium concentration of Cr When
$$[Zh] = 1.00 \text{ M}$$
?

$$\mathcal{E} = 0, \quad so \quad \mathcal{E}^{\circ} = \frac{c_1 c_2 s_7 V}{6} \ln \left(\frac{(m)^3}{(c_r)^3 + (c_r)^3} \right)$$

$$\mathcal{E} = 0, \quad so \quad \mathcal{E}^{\circ} = \frac{c_1 c_2 s_7 V}{6} \ln \left(\frac{(m)^3}{(c_r)^3 + (c_r)^3 + ($$

10. (17 points) Calcium fluoride is a very slightly water-soluble solid. Oxidation of calcium metal in the presence of fluoride ion produces CaF_2 directly, rather than aqueous Ca^{2+} . K_{sp} for CaF_2 , is 4.0 x 10^{-11} at 25°C. Calculate the value of ε ° for the reaction below.

11. (18 points) Many organic molecules undergo free radical-induced reactions with molecular oxygen, called autooxidation. Write the rate law for the autooxidation whose mechanism is shown below. Assume that the third step is rate-limiting, and use the *equilibrium approximation* to write an expression for the rate of formation of the major peroxide product, PhCH₂OOH, formed in the 4th step.

$$CH_{3}O-OCH_{3} \xrightarrow{k_{1}} 2 CH_{3}-O \cdot$$

$$CH_{3}-O \cdot + PhCH_{3} \xrightarrow{k_{2}} CH_{3}-OH + PhCH_{2} \cdot$$

$$PhCH_{2} \cdot + O_{2} \xrightarrow{k_{3}} PhCH_{2}-O-O \cdot$$

$$PhCH_{2}-O-O \cdot + PhCH_{3} \xrightarrow{fast} PhCH_{2}-OOH + PhCH_{2} \cdot$$

$$2 PhCH_{2} \cdot \xrightarrow{fast} PhCH_{2}-CH_{2}Ph$$

$$U[CH_{3}OOCH_{3}] = h_{-1}[CH_{3}OOH_{3}] \cdot h_{-$$

12. (20 points) Recall that the activation energy for rotation around a C=C π -bond is 270 kJ/mol. As a consequence, alkenes, which contain the C=C unit, can exist in geometrically distinct "stereoisomeric" forms that do not interconvert at ordinary temperatures, as shown below for 2-butene, CH₃-CH=CH-CH₃.

Organic compounds that contain one or more silicon atoms in place of carbon are expected to have unusual properties that could potentially lead to new materials. The E_a for rotation around the Si=C π -bond is 165 kJ/mol, and the E_a for rotation around the Si=Si π -bond is about 95 kJ/mol.

(a) Calculate the rate constant and the timescale for rotation around a Si=C π -bond at 100 °C. Assume an Arrhenius A-factor of $10^{13.2} \, \text{sec}^{-1}$.

A-factor of
$$10^{13.2} \sec^{-1}$$
.

 $k = 10^{13.2} e^{-\frac{1}{2}} e^{-\frac{1}{2}}$
 $k = 1.238 \times 10^{-10} = 10^{13.2} = 1$

(b) Repeat part a for rotation around an Si=Si π -bond at 25 °C.

5

$$k = 10^{13.7} e^{-G_a/RT} e^{298K}$$

$$k = 3.53 \times 10^{-9} see^{-1} \Rightarrow \gamma = 2840 see$$

$$= 47 mm$$

(c) If you prepared two separate samples of the stereoisomeric forms of CH₃–SiH=SiH–CH₃ (analogous to the structures drawn above), at what temperature (in °C) would you need to store them to ensure no more than 1% interconversion within a year?

$$I_{\nu}\left(\frac{\xi x^{3}c}{\xi x^{7}}\right) = k + \frac{1}{2} \qquad \Rightarrow k = 3,185 \times 10^{-10} \text{sec}^{-1}$$

$$\frac{1}{0.99} \qquad 187 = \frac{1}{3.156 \times 10^{3} \text{sec}}$$

$$k = A e^{-E_0/RT}$$
 $3.185 \times 10^{-10} \text{ see}^{-1} = (10^{13.3} \text{ see}^{-1}) e^{-(95000 \times 10)(8.314 \times 10)} T$
 $T = 718.6 \text{ K} = -54.4 ^{\circ}C$

need a Greezer at a below -55 °C ! Brire...

page 8