Math 111, Introduction to the Calculus, Fall 2011 Midterm III Solutions

1. Calculate the following integrals
(a) $\int_{1}^{4} \frac{1}{\sqrt{x}} d x$
(b) $\int_{-\pi / 2}^{0} \sin (2 t) d t$
(a) Since $\frac{1}{\sqrt{x}}=x^{-1 / 2}$ we have

$$
\begin{aligned}
\int_{1}^{4} x^{-1 / 2} d x & =\left[\frac{x^{1 / 2}}{1 / 2}\right]_{x=1}^{x=4} \\
& =2\left(4^{1 / 2}\right)-2\left(1^{1 / 2}\right) \\
& =4-2 \\
& =2
\end{aligned}
$$

(b) We can guess that the antiderivative of $\sin (2 t)$ involves $\cos (2 t)$. In fact, the derivative of $\cos (2 t)$ is

$$
-2 \sin (2 t)
$$

so the antiderivative of $\sin (2 t)$ is $-\frac{1}{2} \cos (2 t)$. Therefore

$$
\begin{aligned}
\int_{-\pi / 2}^{0} \sin (2 t) d t & =\left[-\frac{1}{2} \cos (2 t)\right]_{t=-\pi / 2}^{t=0} \\
& =\left(-\frac{1}{2} \cos (0)\right)-\left(-\frac{1}{2} \cos (-\pi)\right) \\
& =-\frac{1}{2}-\frac{1}{2} \\
& =-1
\end{aligned}
$$

2. Find the critical points of the function

$$
f(x)=x \sin (x)+\cos (x)
$$

that are in the range $-\pi \leq x \leq \pi$. Classify each critical point as either a local maximum, a local minimum or neither.
To find the critical points we find $f^{\prime}(x)$:

$$
\begin{aligned}
f^{\prime}(x) & =\sin (x)+x \cos (x)-\sin (x) \\
& =x \cos (x)
\end{aligned}
$$

The critical points therefore satisfy $x \cos (x)=0$. This means that either $x=0$ or $\cos (x)=0$. In the range $-\pi \leq x \leq \pi$ the solutions to $\cos (x)=0$ are $x=-\pi / 2$ and $x=\pi / 2$. So the critical points are:

$$
x=0, \quad x=-\pi / 2, \quad x=\pi / 2 .
$$

To classify these, we use the second derivative test. We have

$$
f^{\prime \prime}(x)=\cos (x)-x \sin (x) .
$$

Then:

$$
f^{\prime \prime}(-\pi / 2)=\cos (-\pi / 2)+\pi / 2 \sin (-\pi / 2)=-\pi / 2<0,
$$

so $x=-\pi / 2$ is a local maximum;

$$
f^{\prime \prime}(0)=\cos (0)=1>0,
$$

so $x=0$ is a local minimum;

$$
f^{\prime \prime}(\pi / 2)=\cos (\pi / 2)-\pi / 2 \sin (\pi / 2)=-\pi / 2<0,
$$

so $x=\pi / 2$ is a local maximum.
3. For the function

$$
f(x)=\frac{x^{2}}{x+1}
$$

we have

$$
f^{\prime}(x)=\frac{x(x+2)}{(x+1)^{2}}
$$

and

$$
f^{\prime \prime}(x)=\frac{2}{(x+1)^{3}} .
$$

(a) Where does the graph of $f(x)$ have a vertical asymptote?
(b) On which intervals is $f(x)$ increasing or decreasing?
(c) On which intervals is $f(x)$ concave up or concave down?

Sketch a graph of the function f for the range $-4 \leq x \leq 4$ that displays your answers to the above questions. (Your graph should also show that $f(0)=0$ and $f(-2)=-4$. There is extra space on the next page for this question so you can make your graph nice and big.)
(a) $x=-1$
(b) Since $(x+1)^{2}$ is always positive, it is sufficient to look at the sign of $x(x+2)$.

For $x<-2, x<0$ and $x+2<0$, so $f^{\prime}(x)>0$ and f is increasing.
For $-2<x<-1, x<0$ and $x+2>0$ so $f^{\prime}(x)<0$ and f is decreasing.
For $-1<x<0, x<0$ and $x+2>0$ so $f^{\prime}(x)<0$ and f is decreasing.
For $x>0, x>0$ and $x+2>0$ so $f^{\prime}(x)>0$ and f is increasing.
(c) For $x<-1$, we have $(x+1)^{3}<0$ so f is concave down. For $x>-1,(x+1)^{3}>0$ so f is concave up.

The graph looks as follows:

4. (a) Show how to calculate

$$
\int_{-1}^{2}|2 x| d x
$$

by finding the relevant area (not by finding antiderivatives). You should include a diagram and explain your answer fully.
(b) Suppose you know that

$$
\int_{0}^{2} g(x) d x=-4, \quad \int_{0}^{4} g(x) d x=5 .
$$

Find:
i. $\int_{0}^{2} 2 g(x)-1 d x$
ii. $\int_{2}^{4} g(x) d x$
(a) The graph of the function is

The integral is given by adding the two shaded areas. The one on the left is a triangle with base 1 unit and height 2 units, so its area is 1 . The one of the right is a triangle with base 2 units and height 4 units, so its area is 4 . Therefore the integral is equal to $1+4=5$.
(b) i. We have

$$
\begin{aligned}
\int_{0}^{2} 2 g(x)-1 d x & =\int_{0}^{2} 2 g(x) d x-\int_{0}^{2} 1 d x \\
& =2 \int_{0}^{2} g(x) d x-[x]_{x=0}^{x=2} \\
& =2(-4)-2 \\
& =-10
\end{aligned}
$$

ii. We have

$$
\int_{2}^{4} g(x) d x=\int_{0}^{4} g(x) d x-\int_{0}^{2} g(x) d x=5-(-4)=9
$$

5. If the sum of two positive numbers x and y is 10 , find the maximum possible value of

$$
2 y+x^{2}
$$

(As part of your answer, explain how you know there is a maximum value.)
[This question should have said that $x, y \geq 0$ so that they are allowed to be 0.]
We want to find the maximum value of $2 y+x^{2}$ where $x+y=10$. Then $y=10-x$ we are trying to maximize

$$
f(x)=2(10-x)+x^{2}=x^{2}-2 x+20
$$

The range of possible x-values is $0 \leq x \leq 10$. We have to test the critical points:

$$
0=f^{\prime}(x)=2 x-2
$$

so that $x=1$, where $f(1)=1-2+20=19$. There are no points where f is not differentiable. We also have to test the endpoints $x=0$ where $f(0)=20$ and $x=10$ where $f(10)=100-20+20=100$.
Therefore the maximum value is 100 when $x=10$ and $y=0$.

