Stoichiometry Workshop 2 - Solutions

Question 1:
73.
a. $\quad \mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{s})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
$0.641 \mathrm{~g} \mathrm{AgCl} \times \frac{1 \mathrm{~mol} \mathrm{AgCl}}{143.4 \mathrm{~g} \mathrm{AgCl}} \times \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{2 \mathrm{~mol} \mathrm{AgCl}^{2}} \times \frac{95.21 \mathrm{~g}}{\mathrm{~mol} \mathrm{MgCl}_{2}}=0.213 \mathrm{~g} \mathrm{MgCl}_{2}$
$\frac{0.213 \mathrm{~g} \mathrm{MgCl}_{2}}{1.50 \mathrm{~g} \text { mixture }} \times 100=14.2 \% \mathrm{MgCl}_{2}$
b. $\quad 0.213 \mathrm{~g} \mathrm{MgCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{95.21 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{AgNO}_{3}}{\mathrm{~mol} \mathrm{MgCl}_{2}} \times \frac{1 \mathrm{~L}}{0.500 \mathrm{~mol} \mathrm{AgNO}_{3}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}$

$$
=8.95 \mathrm{~mL} \mathrm{AgNO}_{3}
$$

Question 2:
83. $\mathrm{Mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}=0.250 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}}{192.1 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}}=1.30 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$

Let $\mathrm{H}_{x} \mathrm{~A}$ represent citric acid, where x is the number of acidic hydrogens. The balanced neutralization reaction is:

$$
\mathrm{H}_{x} \mathrm{~A}(\mathrm{aq})+x \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow x \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{A}^{x-}(\mathrm{aq})
$$

Mol OH
$x=\frac{\mathrm{mol} \mathrm{OH}^{-}}{\text {mol citric acid }}=\frac{3.91 \times 10^{-3} \mathrm{~mol}}{1.30 \times 10^{-3} \mathrm{~mol}}=3.01$
Therefore, the general acid formula for citric acid is $\mathrm{H}_{3} \mathrm{~A}$, meaning that citric acid has three acidic hydrogens per citric acid molecule (citric acid is a triprotic acid).

Question 3: (Chapter 4 \#71) Answer $=173 \mathrm{ml}$ evaporated
71. $\mathrm{Mol} \mathrm{CaCl}_{2}$ present $=0.230 \mathrm{~L} \mathrm{CaCl}_{2} \times \frac{0.275 \mathrm{~mol} \mathrm{CaCl}_{2}}{\mathrm{~L} \mathrm{CaCl}_{2}}=6.33 \times 10^{-2} \mathrm{~mol} \mathrm{CaCl}_{2}$ The volume of CaCl_{2} solution after evaporation is:

$$
6.33 \times 10^{-2} \mathrm{~mol} \mathrm{CaCl}_{2} \times \frac{1 \mathrm{~L} \mathrm{CaCl}_{2}}{1.10 \mathrm{~mol} \mathrm{CaCl}_{2}}=5.75 \times 10^{-2} \mathrm{~L}=57.5 \mathrm{~mL} \mathrm{CaCl}_{2}
$$

Volume $\mathrm{H}_{2} \mathrm{O}$ evaporated $=230 . \mathrm{mL}-57.5 \mathrm{~mL}=173 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ evaporated

Question 4: (Chapter 4 \#69, with modifications) Answers: Part b $=49.4 \mathrm{ml}$; Part $\mathrm{c}=2.5 \mathrm{M}$ $\left[\mathrm{Mg}^{2+}\right]$
69. $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

$$
3.00 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Mg}} \times \frac{1 \mathrm{~L} \mathrm{HCl}}{5.0 \mathrm{~mol} \mathrm{HCl}}=0.0494 \mathrm{~L}=49.4 \mathrm{~mL} \mathrm{HCl}
$$

Question 5: (Chapter 4 \#79) Answer $=2.00 \mathrm{M}$
79.

$$
\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

Mol NaOH used $=2.06 \mathrm{~g} \mathrm{Cr}(\mathrm{OH})_{3} \times \frac{1 \mathrm{~mol} \mathrm{Cr}(\mathrm{OH})_{3}}{103.02 \mathrm{~g}} \times \frac{3 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{mol} \mathrm{Cr}(\mathrm{OH})_{3}}=6.00 \times 10^{-2} \mathrm{~mol}$
to form precipitate to form precipitate

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Mol NaOH used $=0.1000 \mathrm{~L} \times \frac{0.400 \mathrm{~mol} \mathrm{HCl}}{\mathrm{L}} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{mol} \mathrm{HCl}}=4.00 \times 10^{-2} \mathrm{~mol}$ to react with HCl

$$
M_{\mathrm{NaOH}}=\frac{\text { total mol NaOH }}{\text { volume }}=\frac{6.00 \times 10^{-2} \mathrm{~mol}+4.00 \times 10^{-2} \mathrm{~mol}}{0.0500 \mathrm{~L}}=2.00 \mathrm{M} \mathrm{NaOH}
$$

