Solutions to the Analysis problems on the Comprehensive Examination of January 29, 2010

- 1. (10 points)
 - (a) State the Axiom of Completeness (also known as the Axiom of Continuity for the Real Numbers or Axiom C).Solution: Every nonempty set of real numbers that is bounded above has a least
 - (b) State the Heine-Borel Theorem. Solution: A set $K \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.
- 2. (10 points) Use induction to prove that

$$\sum_{k=1}^{n} kx^{k-1} = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2}$$

for all positive integers n.

Solution: When n = 1,

upper bound.

$$\sum_{k=1}^{n} kx^{k-1} = 1 \cdot x^{0} = 1 \text{ and } \frac{1 - 2x + x^{2}}{(1 - x)^{2}} = 1.$$

Hence the equation holds when n = 1.

Suppose the equation holds for some $n \in \mathbb{N}$. Then

$$\sum_{k=1}^{n} kx^{k-1} = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2}$$

Hence

$$\begin{split} \sum_{k=1}^{n+1} kx^{k-1} &= \sum_{k=1}^{n} kx^{k-1} + (n+1)x^n \\ &= \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2} + (n+1)x^n \quad \text{(inductive hypothesis)} \\ &= \frac{1 - (n+1)x^n + nx^{n+1} + (1-x)^2(n+1)x^n}{(1-x)^2} \\ &= \frac{1 - (n+1)x^n + nx^{n+1} + (n+1)x^n - 2(n+1)x^{n+1} + (n+1)x^{n+2}}{(1-x)^2} \\ &= \frac{1 - (n+2)x^{n+1} + (n+1)x^{n+2}}{(1-x)^2}. \end{split}$$

Hence the equation still holds for n + 1. Therefore

$$\sum_{k=1}^{n} kx^{k-1} = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2}$$

holds for all positive integers n.

Note: The problem should have stated that x is a real number different from 1.

- 3. (10 points)
 - (a) State the definition of Cauchy sequence in \mathbb{R}

Solution: A sequence (a_n) is called a Cauchy sequence if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $m, n \geq N$, it follows that $|a_m - a_n| < \epsilon$.

(b) Use the definition of Cauchy sequence to prove that every Cauchy sequence in ℝ is bounded.

Solution: Suppose (a_n) is a Cauchy sequence. By definition, there exists an $N \in \mathbb{N}$ such that for all $m, n \geq N$, $|a_m - a_n| < 1$. Pick n = N, we get that there exists an $N \in \mathbb{N}$ satisfying for all $m \geq N$, $|a_m - a_N| < 1$. By the triangle inequality, this implies

$$|a_m| - |a_N| \le |a_m - a_N| < 1$$

for $m \ge N$. Thus $|a_m| < |a_N| + 1$ for $m \ge N$. Let $M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, |a_N| + 1\}$. Then $|a_k| \le M$ for all $k \in \mathbb{N}$. By definition, the sequence is bounded by M.

- 4. (10 points) Let $f_n(x) = \frac{nx}{1+nx}$ for $x \ge 0$.
 - (a) State the function f to which the sequence $\{f_n\}_{n=1}^{\infty}$ converges pointwise. **Solution:** First observe that $f_n(0) = 0$, so that $f_n(0)$ converges to 0. When x > 0, notice that $f_n(x) = 1 - \frac{1}{1+nx}$ and $\frac{1}{1+nx} \to 0$ as $n \to \infty$ since x > 0. Hence, for $x \ge 0$, $f_n(x)$ converges pointwise to

$$f(x) = \begin{cases} 0 & x = 0\\ 1 & x > 0. \end{cases}$$

(b) Prove that $\{f_n\}_{n=1}^{\infty}$ converges uniformly on $[1, \infty)$. **Solution:** Note that f = 1 on $[1, \infty)$. Take $\epsilon > 0$. If $\epsilon < 1$, we have $1 < \frac{1}{\epsilon}$. Pick $N \in \mathbb{N}$ with $N > \frac{1}{\epsilon} - 1$. Then for all $n \ge N, x \ge 1$, we have $|f_n(x) - f(x)| = |-\frac{1}{1+nx}| = \frac{1}{1+nx} \le \frac{1}{1+n} \le \frac{1}{1+N} < \frac{1}{1+(\frac{1}{\epsilon}-1)} = \epsilon$. If $\epsilon \ge 1$, let N = 1. For any $n \ge N, x \ge 1$. Then $|f_n(x) - f(x)| = |-\frac{1}{1+nx}| = \frac{1}{1+nx} \le \frac{1}{1+nx} \le \frac{1}{1+1+1} < 1 \le \epsilon$.

Hence for each $\epsilon > 0$, we can find $N \in \mathbb{N}$ such that $n \ge N$ gives $|f_n(x) - f(x)| < \epsilon$ for all $x \ge 1$. Then by definition $\{f_n\}_{n=1}^{\infty}$ converges uniformly on $[1, \infty)$.

(c) Explain why $\{f_n\}_{n=1}^{\infty}$ does NOT converge uniformly on $[0, \infty)$.

Solution 1: Note that each f_n is continuous on $[0, \infty)$. If convergence were uniform, then the limit function f would be continuous by a standard theorem in analysis. However, the formula for f given in (a) makes it clear that f is not continuous at 0. Hence convergence cannot be uniform.

Solution 2: To show the statement is false, we need to find one bad ϵ .

Let $\epsilon = 1/2$, and for each $N \in \mathbb{N}$, pick $x = \frac{1}{N}$. Then we have $|f_N(x) - f(x)| = |\frac{N(\frac{1}{N})}{1+N(\frac{1}{N})}| = \frac{1}{2}$. Hence no $N \in \mathbb{N}$ can satisfy the condition that $|f_n(x) - f(x)| < 1/2$ for all $x \in [0, \infty)$, $n \ge N$.

Therefore $\{f_n\}_{n=1}^{\infty}$ does not converge uniformly on $[0, \infty)$.