
Solutions to the Analysis problems on the Comprehensive Examination of Jan-
uary 29, 2010

1. (10 points)

(a) State the Axiom of Completeness (also known as the Axiom of Continuity for the
Real Numbers or Axiom C).

Solution: Every nonempty set of real numbers that is bounded above has a least
upper bound.

(b) State the Heine-Borel Theorem.

Solution: A set K ⊆ R is compact if and only if it is closed and bounded.

2. (10 points) Use induction to prove that

n∑
k=1

kxk−1 =
1− (n+ 1)xn + nxn+1

(1− x)2

for all positive integers n.

Solution: When n = 1,

n∑
k=1

kxk−1 = 1 · x0 = 1 and
1− 2x+ x2

(1− x)2
= 1.

Hence the equation holds when n = 1.

Suppose the equation holds for some n ∈ N. Then

n∑
k=1

kxk−1 =
1− (n+ 1)xn + nxn+1

(1− x)2
.

Hence

n+1∑
k=1

kxk−1 =
n∑
k=1

kxk−1 + (n+ 1)xn

=
1− (n+ 1)xn + nxn+1

(1− x)2
+ (n+ 1)xn (inductive hypothesis)

=
1− (n+ 1)xn + nxn+1 + (1− x)2(n+ 1)xn

(1− x)2

=
1− (n+ 1)xn + nxn+1 + (n+ 1)xn − 2(n+ 1)xn+1 + (n+ 1)xn+2

(1− x)2

=
1− (n+ 2)xn+1 + (n+ 1)xn+2

(1− x)2
.
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Hence the equation still holds for n+ 1. Therefore
n∑
k=1

kxk−1 =
1− (n+ 1)xn + nxn+1

(1− x)2

holds for all positive integers n.

Note: The problem should have stated that x is a real number different from 1.

3. (10 points)

(a) State the definition of Cauchy sequence in R
Solution: A sequence (an) is called a Cauchy sequence if for every ε > 0, there
exists an N ∈ N such that whenever m,n ≥ N , it follows that |am − an| < ε.

(b) Use the definition of Cauchy sequence to prove that every Cauchy sequence in R
is bounded.

Solution: Suppose (an) is a Cauchy sequence. By definition, there exists an
N ∈ N such that for all m,n ≥ N , |am − an| < 1. Pick n = N , we get that
there exists an N ∈ N satisfying for all m ≥ N, |am − aN | < 1. By the triangle
inequality, this implies

|am| − |aN | ≤ |am − aN | < 1

for m ≥ N . Thus |am| < |aN |+ 1 for m ≥ N .

Let M = max{|a1|, |a2|, . . . , |aN−1|, |aN | + 1}. Then |ak| ≤ M for all k ∈ N. By
definition, the sequence is bounded by M .

4. (10 points) Let fn(x) = nx
1+nx

for x ≥ 0.

(a) State the function f to which the sequence {fn}∞n=1 converges pointwise.

Solution: First observe that fn(0) = 0, so that fn(0) converges to 0. When
x > 0, notice that fn(x) = 1− 1

1+nx
and 1

1+nx
→ 0 as n→∞ since x > 0. Hence,

for x ≥ 0, fn(x) converges pointwise to

f(x) =

{
0 x = 0

1 x > 0.

(b) Prove that {fn}∞n=1 converges uniformly on [1,∞).

Solution: Note that f = 1 on [1,∞). Take ε > 0.

If ε < 1, we have 1 < 1
ε
. Pick N ∈ N with N > 1

ε
− 1. Then for all n ≥ N, x ≥ 1,

we have |fn(x)− f(x)| = | − 1
1+nx
| = 1

1+nx
≤ 1

1+n
≤ 1

1+N
< 1

1+( 1
ε
−1) = ε.

If ε ≥ 1, let N = 1. For any n ≥ N, x ≥ 1. Then |fn(x) − f(x)| = | − 1
1+nx
| =

1
1+nx

≤ 1
1+1·1 < 1 ≤ ε.

Hence for each ε > 0, we can find N ∈ N such that n ≥ N gives |fn(x)−f(x)| < ε
for all x ≥ 1. Then by definition {fn}∞n=1 converges uniformly on [1,∞).
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(c) Explain why {fn}∞n=1 does NOT converge uniformly on [0,∞).

Solution 1: Note that each fn is continuous on [0,∞). If convergence were
uniform, then the limit function f would be continuous by a standard theorem
in analysis. However, the formula for f given in (a) makes it clear that f is not
continuous at 0. Hence convergence cannot be uniform.

Solution 2: To show the statement is false, we need to find one bad ε.

Let ε = 1/2, and for each N ∈ N, pick x = 1
N

. Then we have |fN(x) − f(x)| =

| N( 1
N
)

1+N( 1
N
)
| = 1

2
. Hence no N ∈ N can satisfy the condition that |fn(x)−f(x)| < 1/2

for all x ∈ [0,∞), n ≥ N .

Therefore {fn}∞n=1 does not converge uniformly on [0,∞).
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