Comprehensive and Honors Qualifying Examination $\lhd \mbox{ Algebra} \rhd \\ \mbox{ January 2017}$

January 2017
Number:
Senior:
Junior:
Read This First:
• This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
\bullet Write your number (not your name) in the above space, and indicate whether you are a junior or a senior.
• For any given problem, you may use the back of the <i>previous</i> page for scratch work. Put your final answers in the spaces provided.
• Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
• In order to receive full credit on a problem, solution methods must be complete, logical and understandable.
\bullet The Algebra Exam consists of Questions 1–4 that total to 100 points.
For Department Use Only:
Grader #1:
Grader #2:

Algebra January 2017

1. [25 points] Let G be a group, let $H \subseteq G$ be a subgroup, and let $N \subseteq G$ be a **normal** subgroup. Define

$$NH = \{nh : n \in N, h \in H\}.$$

Prove that NH is a subgroup of G.

- 2. [17 points] Let G be a finite group, and suppose that there is an element $a \in G$ with the property that $a^2 = a^{-1}$ but a is not the identity. Prove that the order of G is divisible by 3.
- 3. Consider the group S_8 of permutations of the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$.
 - (a) [10 points] Find an element of S_8 of order 15. (Don't forget to explain or prove why it has order 15.)
 - (b) [15 points] Prove that there are no **odd** permutations in S_8 of order 15.
- 4. Let R be a ring.
 - (a) [8 points] Define what it means for a subset $I \subseteq R$ to be an **ideal** of R. If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.
 - (b) [25 points] Suppose that R is commutative and has a multiplicative identity 1. Let $I \subseteq J \subseteq R$ be ideals, and suppose that the quotient ring R/I is a field.

If $I \subsetneq J$, prove that $1 \in J$.

(In fact, it is a Theorem from Math 350 that J=R in this case, but you are only being asked to prove that $1 \in J$. In particular, however, you may **not** quote the J=R theorem.)