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1. Suppose we have nonempty subsets A, B C R that are bounded above. Define

(a)

2. (a)

A+B={a+blac Abec B}.

[10 points] Prove that A 4+ B is bounded above.

Solution: Since A and B are both nonempty and bounded above, we know from the
Axiom of Completeness that their supremums exist. Let s = sup(A) and ¢ = sup(B).
We aim to show that s + ¢ is an upper bound for A + B.

Let x € A+ B. There exists some a € A and b € B such that + = a + b. Since s
and t are upper bounds for A and B respectively, we know that a < s and b < t.
Thus z =a+b < s+t and A+ B is bounded above by s+ t. ]

[15 points] Prove that sup(A + B) < sup(A) + sup(B).

Solution: From part (a), we know that A+ B is bounded and clearly nonempty so
by the Axiom of Completeness, sup(A + B) exists. Further, from part (a) we know
that sup(A)-+sup(B) is an upper bound for A+ B. Since sup(A+ B) is the smallest
upper bound for A + B, it must be that sup(A + B) < sup(A) + sup(B). O

[10 points| State the e-NN definition of what it means for a sequence (a,) of real
numbers to converge to a € R.

Solution: A sequence of real numbers is said to converge to a real number a if,
for every € > 0, there exists an N € N such that whenever n > N it follows that
la —an| <e.

Note: One could also give the Topological Version of Convergence. A sequence of
real numbers is said to converge to a real number a if, for every € > 0, there exists
an N € N such that whenever n > N it follows that a, € Vi(a).

[15 points| Assume that sequences (a,) and (b,) converge to real numbers a and b
respectively. In other words, (a,) — a and (b,) — b. Use the definition given in
part (a) to prove that (a, + b,) — a + b.

Solution: Let ¢ > 0 be given. By definition of convergence, since (a,) — a we
know that there exists an Ny € N such that whenever n > N; it follows that
la — a,| < 5. Similarly, since (b,) — b we know that there exists an N, € N such
that whenever n > Nj it follows that [b —b,| < 5. Letting N = max{Ny, Ny} gives
us that, whenever n > N it follows that

[(a+b) — (an +bn)| = |(a — an) + (b—b,)]
< |a — ay|+ |b — by|

<€+€_
2 727 ¢

where the last inequality follows form the fact that n > N; and n > N,. Thus, by
the definition of convergence (a, +b,) — a + b. O
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()

[10 points] In the limit notation used in calculus, the result of Problem 2(b) can be
stated as the implication

(1) if lim a, =a and lim b, = b, then lim (a, +b,) =a+b.
n—oo n—oo n—oo
Suppose that we have k sequences (a1 ), (a2), .. (agn,). Use (1) and induction on
k > 1 to prove that if lim ay, = ay, ..., lim ax, = ai, then
n—oo n—o0

lim (ay, + -+ agn) = a1+ + a.

n—o0

Solution: The base case, when k£ = 1 is trivially true.

Next, assume that the statement is true for £ = ¢ sequences and that we have ¢+ 1

sequences (a1.,), (a2n), - .. (@rr1,) such that lim a;, = a; for each 1 < i < ¢+ 1.
n—oo

In this case we have that

lim (al,n +-F aﬁ+1,n) = 1Lm [(al,n + a'é,n) + a€+1,n:|

n—oo

= lim (ayn, + - apy) + lim app1p
=(a1 4+ 4a) + a1 =a1+ -+ ag+ ap,

where the second equality follows from 2(b) and the third equality follows from the
inductive assumption. O

[5 points] Suppose that A C R and for every n € N we have a function f, : A — R.
Define what it means for (f,) to converge pointwise on A to a function f: A — R.

Solution: The sequence of functions (f,,) converges pointwise on A to f if for every
e > 0 and =z € A there exists an N € N such that whenever n > N it follows that

[ful@) = fl2)] <e
[10 points] Using the notation of part (a), define what it means for (f,,) to converge
uniformly on A to f.

Solution: The sequence of functions (f,,) converges uniformly on A to f if for every
€ > 0 there exists an N € N such that whenever n > N and x € A it follows that

[fnlz) — fz)] <€

Note: The difference between pointwise and uniform convergence is that in uniform
convergence the choice of N € N can be made independently of the value of z € A.

[15 points| Suppose that g : A — R is a bounded function. For each n € N, define

There is a function f such that (f,) converges uniformly to f. Find f and prove
that the convergence is uniform.
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Solution: Let € > 0 be given. Since g(z) is bounded on A, there exists an M > 0
such that for every x € A we have that |g(x)| < M. By the archimedean property,
there exists an N € N such that & < 5. Let f(x) be the function that is uniformly
zero on A. For every n > N and x € A it follows that

o)) _ bt M

(37)

Therefore, f, converges uniformly to f on A. m

%<%< —
=N = €.

() = f(2)] = [fulz) — 0] =

n n

4. [10 points| Suppose that we have open sets O, C R for all A in some index set A. Prove

that the union O = U O, is an open set.
AeA

Solution: Let a € O = U O,. By definition there exists a A\g € A such that a €

AEA
O,,- Since O,, is open, there exists an € > 0 such that the epsilon neighborhood of a,

Vi(a), is contained in Oy,. Therefore, V.(a) € Oy, C U cp Or = O and O is open by
definition. ]
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