Comprehensive and Honors Qualifying Examination \triangleleft Analysis Solutions \triangleright January 2017

Number:

\qquad
Senior: \qquad
Junior: \qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space, and indicate whether you are a junior or a senior.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable.
- The Analysis Solutions Exam consists of Questions 1-4 that total to 100 points.

For Department Use Only:
Grader \#1: \qquad
Grader \#2: \qquad

1. Suppose we have nonempty subsets $A, B \subseteq \mathbb{R}$ that are bounded above. Define

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

(a) [10 points] Prove that $A+B$ is bounded above.

Solution: Since A and B are both nonempty and bounded above, we know from the Axiom of Completeness that their supremums exist. Let $\mathrm{s}=\sup (A)$ and $t=\sup (B)$. We aim to show that $s+t$ is an upper bound for $A+B$.
Let $x \in A+B$. There exists some $a \in A$ and $b \in B$ such that $x=a+b$. Since s and t are upper bounds for A and B respectively, we know that $a \leq s$ and $b \leq t$. Thus $x=a+b \leq s+t$ and $A+B$ is bounded above by $s+t$.
(b) [15 points] Prove that $\sup (A+B) \leq \sup (A)+\sup (B)$.

Solution: From part (a), we know that $A+B$ is bounded and clearly nonempty so by the Axiom of Completeness, $\sup (A+B)$ exists. Further, from part (a) we know that $\sup (A)+\sup (B)$ is an upper bound for $A+B$. Since $\sup (A+B)$ is the smallest upper bound for $A+B$, it must be that $\sup (A+B) \leq \sup (A)+\sup (B)$.
2. (a) [10 points] State the $\epsilon-N$ definition of what it means for a sequence $\left(a_{n}\right)$ of real numbers to converge to $a \in \mathbb{R}$.

Solution: A sequence of real numbers is said to converge to a real number a if, for every $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $\left|a-a_{n}\right|<\epsilon$.

Note: One could also give the Topological Version of Convergence. A sequence of real numbers is said to converge to a real number a if, for every $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $a_{n} \in V_{\epsilon}(a)$.
(b) [15 points] Assume that sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge to real numbers a and b respectively. In other words, $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$. Use the definition given in part (a) to prove that $\left(a_{n}+b_{n}\right) \rightarrow a+b$.

Solution: Let $\epsilon>0$ be given. By definition of convergence, since $\left(a_{n}\right) \rightarrow a$ we know that there exists an $N_{1} \in \mathbb{N}$ such that whenever $n \geq N_{1}$ it follows that $\left|a-a_{n}\right|<\frac{\epsilon}{2}$. Similarly, since $\left(b_{n}\right) \rightarrow b$ we know that there exists an $N_{2} \in \mathbb{N}$ such that whenever $n \geq N_{2}$ it follows that $\left|b-b_{n}\right|<\frac{\epsilon}{2}$. Letting $N=\max \left\{N_{1}, N_{2}\right\}$ gives us that, whenever $n \geq N$ it follows that

$$
\begin{aligned}
\left|(a+b)-\left(a_{n}+b_{n}\right)\right| & =\left|\left(a-a_{n}\right)+\left(b-b_{n}\right)\right| \\
& \leq\left|a-a_{n}\right|+\left|b-b_{n}\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,
\end{aligned}
$$

where the last inequality follows form the fact that $n \geq N_{1}$ and $n \geq N_{2}$. Thus, by the definition of convergence $\left(a_{n}+b_{n}\right) \rightarrow a+b$.
(c) [10 points] In the limit notation used in calculus, the result of Problem 2(b) can be stated as the implication

$$
\begin{equation*}
\text { if } \lim _{n \rightarrow \infty} a_{n}=a \text { and } \lim _{n \rightarrow \infty} b_{n}=b \text {, then } \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b . \tag{1}
\end{equation*}
$$

Suppose that we have k sequences $\left(a_{1, n}\right),\left(a_{2, n}\right), \ldots\left(a_{k, n}\right)$. Use (1) and induction on $k \geq 1$ to prove that if $\lim _{n \rightarrow \infty} a_{1, n}=a_{1}, \ldots, \lim _{n \rightarrow \infty} a_{k, n}=a_{k}$, then

$$
\lim _{n \rightarrow \infty}\left(a_{1, n}+\cdots+a_{k, n}\right)=a_{1}+\cdots+a_{k} .
$$

Solution: The base case, when $k=1$ is trivially true.
Next, assume that the statement is true for $k=\ell$ sequences and that we have $\ell+1$ sequences $\left(a_{1, n}\right),\left(a_{2, n}\right), \ldots\left(a_{\ell+1, n}\right)$ such that $\lim _{n \rightarrow \infty} a_{i, n}=a_{i}$ for each $1 \leq i \leq \ell+1$. In this case we have that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{1, n}+\cdots+a_{\ell+1, n}\right) & =\lim _{n \rightarrow \infty}\left[\left(a_{1, n}+\cdots a_{\ell, n}\right)+a_{\ell+1, n}\right] \\
& =\lim _{n \rightarrow \infty}\left(a_{1, n}+\cdots a_{\ell, n}\right)+\lim _{n \rightarrow \infty} a_{\ell+1, n} \\
& =\left(a_{1}+\cdots+a_{\ell}\right)+a_{\ell+1}=a_{1}+\cdots+a_{\ell}+a_{\ell+1}
\end{aligned}
$$

where the second equality follows from 2(b) and the third equality follows from the inductive assumption.
3. (a) [5 points] Suppose that $A \subseteq \mathbb{R}$ and for every $n \in \mathbb{N}$ we have a function $f_{n}: A \rightarrow \mathbb{R}$. Define what it means for $\left(f_{n}\right)$ to converge pointwise on A to a function $f: A \rightarrow \mathbb{R}$.

Solution: The sequence of functions $\left(f_{n}\right)$ converges pointwise on A to f if for every $\epsilon>0$ and $x \in A$ there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $\left|f_{n}(x)-f(x)\right|<\epsilon$.
(b) [10 points] Using the notation of part (a), define what it means for $\left(f_{n}\right)$ to converge uniformly on A to f.

Solution: The sequence of functions $\left(f_{n}\right)$ converges uniformly on A to f if for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ and $x \in A$ it follows that $\left|f_{n}(x)-f(x)\right|<\epsilon$.

Note: The difference between pointwise and uniform convergence is that in uniform convergence the choice of $N \in \mathbb{N}$ can be made independently of the value of $x \in A$.
(c) [15 points] Suppose that $g: A \rightarrow \mathbb{R}$ is a bounded function. For each $n \in \mathbb{N}$, define

$$
f_{n}(x)=\frac{g(x)}{n}
$$

There is a function f such that $\left(f_{n}\right)$ converges uniformly to f. Find f and prove that the convergence is uniform.

Solution: Let $\epsilon>0$ be given. Since $g(x)$ is bounded on A, there exists an $M>0$ such that for every $x \in A$ we have that $|g(x)| \leq M$. By the archimedean property, there exists an $N \in \mathbb{N}$ such that $\frac{1}{N}<\frac{\epsilon}{M}$. Let $f(x)$ be the function that is uniformly zero on A. For every $n \geq N$ and $x \in A$ it follows that

$$
\left|f_{n}(x)-f(x)\right|=\left|f_{n}(x)-0\right|=\left|\frac{g(x)}{n}\right|=\frac{|g(x)|}{n} \leq \frac{M}{n} \leq \frac{M}{N}<\frac{M}{\left(\frac{\epsilon}{M}\right)}=\epsilon
$$

Therefore, f_{n} converges uniformly to f on A.
4. [10 points] Suppose that we have open sets $O_{\lambda} \subseteq \mathbb{R}$ for all λ in some index set Λ. Prove that the union $O=\bigcup_{\lambda \in \Lambda} O_{\lambda}$ is an open set.

Solution: Let $a \in O=\bigcup_{\lambda \in \Lambda} O_{\lambda}$. By definition there exists a $\lambda_{0} \in \Lambda$ such that $a \in$ $O_{\lambda_{0}}$. Since $O_{\lambda_{0}}$ is open, there exists an $\epsilon>0$ such that the epsilon neighborhood of a, $V_{\epsilon}(a)$, is contained in $O_{\lambda_{0}}$. Therefore, $V_{\epsilon}(a) \subseteq O_{\lambda_{0}} \subseteq \bigcup_{\lambda \in \Lambda} O_{\lambda}=O$ and O is open by definition.

