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Analysis January 2017

1. Suppose we have nonempty subsets A, B C R that are bounded above. Define
A+B={a+blac Abec B}.

(a) [10 points] Prove that A 4+ B is bounded above.
(b) [15 points] Prove that sup(A + B) < sup(A) + sup(B).
2. (a) [10 points| State the e-N definition of what it means for a sequence (a,) of real
numbers to converge to a € R.

) converge to real numbers a and b
n) — b. Use the definition given in

(b) [15 points] Assume that sequences (a,) and (
respectively. In other words, (a,) — a and (
part (a) to prove that (a, + b,) = a + b.

b
b

(c) [10 points] In the limit notation used in calculus, the result of Problem 2(b) can be
stated as the implication

(1) if lim a, =a and lim b, =b, then lim (a, +b,) =a+ 0.
n—o00 n—o00 n—00
Suppose that we have k sequences (a1 ,,), (a2n), .. (ag,). Use (1) and induction on
k > 1 to prove that if lim ay, = a1, ..., lim ax, = ai, then
n—oo n—o0

lim (a1, + -+ agn) = a1 + -+ + ay.

n—0o0

3. (a) [5 points] Suppose that A C R and for every n € N we have a function f, : A — R.
Define what it means for (f,) to converge pointwise on A to a function f: A — R.

(b) [10 points] Using the notation of part (a), define what it means for (f,,) to converge
uniformly on A to f.

(c) [15 points] Suppose that g : A — R is a bounded function. For each n € N, define

There is a function f such that (f,) converges uniformly to f. Find f and prove
that the convergence is uniform.

4. [10 points| Suppose that we have open sets O, C R for all A in some index set A. Prove

that the union O = U O, is an open set.
AeA
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