Comprehensive and Honors Qualifying Examination

\triangleleft Analysis \triangleright
January 2017
Number:
Senior:
Junior:
Read This First:
• This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
\bullet Write your number (not your name) in the above space, and indicate whether you are a junior or a senior.
• For any given problem, you may use the back of the <i>previous</i> page for scratch work. Put your final answers in the spaces provided.
• Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
• In order to receive full credit on a problem, solution methods must be complete, logical and understandable.
• The Analysis Exam consists of Questions 1–4 that total to 100 points.
For Department Use Only:
Grader #1:
CRADER #2.

Analysis January 2017

1. Suppose we have nonempty subsets $A, B \subseteq \mathbb{R}$ that are bounded above. Define

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

- (a) [10 points] Prove that A + B is bounded above.
- (b) [15 points] Prove that $\sup(A+B) \leq \sup(A) + \sup(B)$.
- 2. (a) [10 points] State the ϵ -N definition of what it means for a sequence (a_n) of real numbers to converge to $a \in \mathbb{R}$.
 - (b) [15 points] Assume that sequences (a_n) and (b_n) converge to real numbers a and b respectively. In other words, $(a_n) \to a$ and $(b_n) \to b$. Use the definition given in part (a) to prove that $(a_n + b_n) \to a + b$.
 - (c) [10 points] In the limit notation used in calculus, the result of Problem 2(b) can be stated as the implication
 - (1) if $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$, then $\lim_{n \to \infty} (a_n + b_n) = a + b$.

Suppose that we have k sequences $(a_{1,n}), (a_{2,n}), \dots (a_{k,n})$. Use (1) and induction on $k \geq 1$ to prove that if $\lim_{n \to \infty} a_{1,n} = a_1, \dots, \lim_{n \to \infty} a_{k,n} = a_k$, then

$$\lim_{n \to \infty} (a_{1,n} + \dots + a_{k,n}) = a_1 + \dots + a_k.$$

- 3. (a) [5 points] Suppose that $A \subseteq \mathbb{R}$ and for every $n \in \mathbb{N}$ we have a function $f_n : A \to \mathbb{R}$. Define what it means for (f_n) to converge *pointwise* on A to a function $f : A \to \mathbb{R}$.
 - (b) [10 points] Using the notation of part (a), define what it means for (f_n) to converge uniformly on A to f.
 - (c) [15 points] Suppose that $g: A \to \mathbb{R}$ is a bounded function. For each $n \in \mathbb{N}$, define

$$f_n(x) = \frac{g(x)}{n}.$$

There is a function f such that (f_n) converges uniformly to f. Find f and prove that the convergence is uniform.

4. [10 points] Suppose that we have open sets $O_{\lambda} \subseteq \mathbb{R}$ for all λ in some index set Λ . Prove that the union $O = \bigcup_{\lambda \in \Lambda} O_{\lambda}$ is an open set.