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Analysis January 2017

1. Suppose we have nonempty subsets A,B ⊆ R that are bounded above. Define

A+B = {a+ b | a ∈ A, b ∈ B}.

(a) [10 points] Prove that A+B is bounded above.

(b) [15 points] Prove that sup(A+B) ≤ sup(A) + sup(B).

2. (a) [10 points] State the ε-N definition of what it means for a sequence (an) of real
numbers to converge to a ∈ R.

(b) [15 points] Assume that sequences (an) and (bn) converge to real numbers a and b
respectively. In other words, (an) → a and (bn) → b. Use the definition given in
part (a) to prove that (an + bn)→ a+ b.

(c) [10 points] In the limit notation used in calculus, the result of Problem 2(b) can be
stated as the implication

(1) if lim
n→∞

an = a and lim
n→∞

bn = b, then lim
n→∞

(an + bn) = a+ b.

Suppose that we have k sequences (a1,n), (a2,n), . . . (ak,n). Use (1) and induction on
k ≥ 1 to prove that if lim

n→∞
a1,n = a1, . . . , lim

n→∞
ak,n = ak, then

lim
n→∞

(a1,n + · · ·+ ak,n) = a1 + · · ·+ ak.

3. (a) [5 points] Suppose that A ⊆ R and for every n ∈ N we have a function fn : A→ R.
Define what it means for (fn) to converge pointwise on A to a function f : A→ R.

(b) [10 points] Using the notation of part (a), define what it means for (fn) to converge
uniformly on A to f .

(c) [15 points] Suppose that g : A→ R is a bounded function. For each n ∈ N, define

fn(x) =
g(x)

n
.

There is a function f such that (fn) converges uniformly to f . Find f and prove
that the convergence is uniform.

4. [10 points] Suppose that we have open sets Oλ ⊆ R for all λ in some index set Λ. Prove

that the union O =
⋃
λ∈Λ

Oλ is an open set.
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