Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 27, 2017

1. (a) [15 points] Find an equation of form $a x+b y+c z=d$ for the plane passing through
$(-2,-1,4)$ that is perpendicular to the line with parametric equations $x=2 t, y=3 t-1, z=5-t$.
Solution: The plane should have the same normal vector as the line parameterized as $(x, y, z)=(2 t, 3 t-1,5-t)=t(2,3,-1)+(0,-1,5)$. Therefore, the plane has normal vector $(2,3,-1)$. It must additionally pass through $(-2,-1,4)$, hence, its equation is given by

$$
\begin{aligned}
& 2(x-(-2))+3(y-(-1))+(-1)(z-4)=0 \\
\Leftrightarrow & 2 x+3 y-z=-11
\end{aligned}
$$

(b) [15 points] Find an equation for the tangent plane to the sphere $x^{2}+y^{2}+z^{2}=3$ at the point $(1,-1,1)$.
Solution: The sphere $x^{2}+y^{2}+z^{2}=3$ is a level surface of the function $F(x, y, z)=$ $x^{2}+y^{2}+z^{2}$. We have

$$
F_{x}(x, y, z)=2 x, F_{y}(x, y, z)=2 y, F_{z}(x, y, z)=2 z
$$

and hence

$$
F_{x}(1,-1,1)=2, F_{y}(1,-1,1)=-2, F_{z}(1,-1,1)=2 .
$$

The tangent plane at $(1,-1,1)$ is thus given by

$$
\begin{aligned}
& F_{x}(1,-1,1)(x-1)+F_{y}(1,-1,1)(y-(-1))+F_{z}(1,-1,1)(z-1)=0 \\
\Leftrightarrow & 2(x-1)+-2(y+1)+2(z-1)=0 \\
\Leftrightarrow & 2 x-2 y+2 z=6 \\
\Leftrightarrow & x-y+z=3
\end{aligned}
$$

2. Let $f(x, y)= \begin{cases}\frac{3 x^{3}-5 y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0) .\end{cases}$
(a) [15 points] Compute $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution: First observe that when $h \neq 0$, we have

$$
f(h, 0)=\frac{3 h^{3}-0}{h^{2}+0}=3 h, \quad f(0, h)=\frac{0-5 h^{3}}{0+h^{2}}=-5 h .
$$

Then we use the definition of partial derivative to obtain

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{3 h-0}{h}=\lim _{h \rightarrow 0} 3=3
$$

and

$$
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{-5 h-0}{h}=\lim _{h \rightarrow 0}-5=-5 .
$$

(b) [10 points] Is f is continuous at $(0,0)$? Justify your answer.

Solution: Recall that f is continuous at $(0,0)$ iff $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)$. Here, $f(0,0)=0$, so it suffices to show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$. In polar coordinates, $x=r \cos \theta, y=r \sin \theta$, and $(x, y) \rightarrow(0,0)$ becomes $r \rightarrow 0$. Then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{3}-5 y^{3}}{x^{2}+y^{2}} & =\lim _{r \rightarrow 0} \frac{3 r^{3} \cos ^{3} \theta-5 r^{3} \sin ^{3} \theta}{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta} \\
& =\lim _{r \rightarrow 0} \frac{r^{3}\left(3 \cos ^{3} \theta-5 \sin ^{3} \theta\right)}{r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)} \\
& =\lim _{r \rightarrow 0} r\left(3 \cos ^{3} \theta-5 \sin ^{3} \theta\right)=0
\end{aligned}
$$

as desired, where we have used $\sin ^{2} \theta+\cos ^{2} \theta=1$, and that $3 \cos ^{3} \theta-5 \sin ^{3} \theta$ is bounded.
3. [20 points] Find the volume of the solid region bounded by the surfaces $y=0, y=3$, $z=x^{2}$, and $z=2-x^{2}$.
Solution: The curves $z=x^{2}$ and $z=2-x^{2}$ intersect when $x^{2}=2-x^{2} \Leftrightarrow 2 x^{2}=2 \Leftrightarrow$ $x= \pm 1$. For $-1 \leq x \leq 1$, the curve $z=2-x^{2}$ sits above the curve $z=x^{2}$. Therefore, the volume is given by

$$
\begin{aligned}
V & =\int_{y=0}^{3} \int_{x=-1}^{1}\left(\left(2-x^{2}\right)-x^{2}\right) d x d y=\int_{y=0}^{3} \int_{x=-1}^{1}\left(2-2 x^{2}\right) d x d y \\
& =\int_{y=0}^{3}\left(2 \int_{x=0}^{1}\left(2-2 x^{2}\right) d x\right) d y=2 \int_{y=0}^{3}\left[2 x-\frac{2}{3} x^{3}\right]_{x=0}^{x=1} d y \\
& =2\left(2-\frac{2}{3}\right) \int_{y=0}^{3} d y=2\left(2-\frac{2}{3}\right) 3=8
\end{aligned}
$$

4. [25 points] Show that the line integral

$$
\int_{C} z^{2} d x+2 y d y+2 x z d z
$$

depends only on the endpoints of the path C and not on the path taken between those endpoints.
Solution: Let $\boldsymbol{x}=(x, y, z)$, and let $F(\boldsymbol{x})=\left(z^{2}, 2 y, 2 x z\right)$. If we let $f(\boldsymbol{x})=z^{2} x+y^{2}$, then the gradient of f satisfies $\nabla f(\boldsymbol{x})=\left(f_{x}, f_{y}, f_{z}\right)=\left(z^{2}, 2 y, 2 x z\right)=F(\boldsymbol{x})$. That is, F is a conservative vector field with potential function f. If C is given by $\boldsymbol{r}(t)$, where $a \leq t \leq b$, then

$$
\int_{C} z^{2} d x+2 y d y+2 x z d z=\int_{C} F \cdot d \boldsymbol{r}=\int_{C} \nabla f \cdot d \boldsymbol{r}=f(\boldsymbol{r}(b))-f(\boldsymbol{r}(a))
$$

by the Fundamental Theorem for Line Integrals, and is therefore independent of path, and depends only on the end points $\boldsymbol{r}(a)$ and $\boldsymbol{r}(b)$.
5. Let V denote the vector space of polynomials of degree less than or equal to 2 with real coefficients. Let $T: V \rightarrow \mathbb{R}$ be a linear transformation.
(a) [5 points] Explain what is meant by the kernel, or null space, of T.

Solution: The set

$$
N(T)=\{\mathbf{x} \in V \mid T(\mathbf{x})=0\}
$$

(b) [15 points] Prove that the kernel of T is a subspace of V.

Solution: Given $\mathbf{x}_{1}, \mathbf{x}_{2} \in N(T)$ arbitrary:

$$
T\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=T\left(\mathbf{x}_{1}\right)+T\left(\mathbf{x}_{2}\right)=0+0=0
$$

So $\mathbf{x}_{1}+\mathbf{x}_{2} \in N(T)$ and so $N(T)$ is closed under addition.
Given $\mathbf{x} \in N(T)$ and $c \in \mathbb{R}$ arbitrary:

$$
T(c \mathbf{x})=c T(\mathbf{x})=c 0=0
$$

So $c \mathbf{x} \in N(T)$ and so $N(T)$ is closed under scalar multiplication.
Since $T(0)=0$ we have $0 \in N(T)$.
Therefore $N(T)$ is a subspace of V.
(c) [10 points] What are the possible values of the nullity (that is, the dimension of the kernel) of T ? Justify your answer.
Solution: By the Rank-Nullity Theorem, the nullity of T is equal to $\operatorname{dim}(V)-$ $\operatorname{rank}(T)$. Since the target vector space is one-dimensional, the rank is either 0 or 1 . The dimension of V is 3 . Therefore, the nullity of T is equal to either 2 or 3 .
6. [20 points] Suppose that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a basis for a vector space U. Is the set

$$
\left\{\mathbf{u}_{1}-\mathbf{u}_{2}, \mathbf{u}_{1}+2 \mathbf{u}_{2}\right\}
$$

also a basis for U ? Justify your answer.
Solution: To decide if the set is linearly independent, suppose that

$$
a\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right)+b\left(\mathbf{u}_{1}+2 \mathbf{u}_{2}\right)=\mathbf{0} .
$$

Rearranging we have

$$
(a+b) \mathbf{u}_{1}+(-a+2 b) \mathbf{u}_{2}=\mathbf{0}
$$

Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a basis, it is linearly independent and so

$$
a+b=0, \quad-a+2 b=0 .
$$

Adding these two equations, we get $3 b=0$ and so $b=0$. Therefore, also $a=0$. So the set

$$
\left\{\mathbf{u}_{1}-\mathbf{u}_{2} \mathbf{u}_{1}+2 \mathbf{u}_{2}\right\}
$$

is linearly independent.
We know that $\operatorname{dim}(U)=2$ since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a basis. Therefore, the linearly independent set $\left\{\mathbf{u}_{1}-\mathbf{u}_{2} \mathbf{u}_{1}+2 \mathbf{u}_{2}\right\}$ must also be a basis.
7. (a) [5 points] Explain what it means to say that a real number λ is an eigenvalue of an $n \times n$ matrix A.
Solution: It means that there is some $\mathbf{x} \in \mathbb{R}^{n}$ with $\mathbf{x} \neq \mathbf{0}$ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

(b) [10 points] Calculate the eigenvalues of the matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & 1 \\
0 & 3 & -1
\end{array}\right]
$$

Solution: The characteristic polynomial is

$$
\operatorname{det}\left[\begin{array}{ccc}
2-\lambda & -1 & 0 \\
0 & 1-\lambda & 1 \\
0 & 3 & -1-\lambda
\end{array}\right]
$$

which gives

$$
(2-\lambda)((1-\lambda)(-1-\lambda)-3)=(2-\lambda)\left(\left(\lambda^{2}-4\right)=-(\lambda-2)^{2}(\lambda+2)\right.
$$

Therefore, the eigenvalues of A are $\lambda=2$ (with multiplicity 2) and $\lambda=-2$ (with multiplicity 1).
(c) [15 points] Decide if A is diagonalizable or not. Justify your answer.

Solution: To find eigenvectors for $\lambda=2$, we solve

$$
(A-2 I) \mathbf{x}=\mathbf{0}
$$

which gives

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & -1 & 1 \\
0 & 3 & -3
\end{array}\right] \mathbf{x}=\mathbf{0}
$$

In reduced row echelon form, this linear system is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \mathbf{x}=\mathbf{0}
$$

which has solutions

$$
\mathbf{x}=\left\{\left.\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

This eigenspace is 1 -dimensional. Since the multiplicity of the eigenvalue 2 is 2 , this means that A is not diagonalizable.
8. (a) [5 points] Let U and W be vector spaces. Explain what it means to say that a linear transformation $S: U \rightarrow W$ is invertible.
Solution: It means that there is some linear transformation $S^{-1}: W \rightarrow U$ such that $S S^{-1}=I_{W}$, the identity on W, and $S^{-1} S=I_{U}$, the identity on U. (Alternatively, one could also explain invertibility in terms of injectivity and surjectivity of S.)
(b) [5 points] Let $T: V \rightarrow V$ be a linear transformation, and let $\alpha=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be a basis for the vector space V. Suppose that the matrix of T with respect to α is

$$
\left[\begin{array}{cc}
3 & -1 \\
2 & 1
\end{array}\right]
$$

Explain how you know that T is invertible.
Solution: The matrix above has determinant $5 \neq 0$ so is an invertible matrix. Therefore T is invertible.
(c) [10 points] Calculate $T^{-1}\left(\mathbf{v}_{1}\right)$. Write your answer as a linear combination of the vectors \mathbf{v}_{1} and \mathbf{v}_{2}.
Solution: The matrix for T^{-1} is given by

$$
\left[\begin{array}{cc}
3 & -1 \\
2 & 1
\end{array}\right]^{-1}=\frac{1}{5}\left[\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right]
$$

Therefore

$$
T^{-1}\left(\mathbf{v}_{1}\right)=\frac{1}{5} \mathbf{v}_{1}-\frac{2}{5} \mathbf{v}_{2} .
$$

