Comprehensive and Honors Qualifying Examination \lhd Multivariable Calculus and Linear Algebra \rhd January 2017

Number:
Senior:
Junior:
Read This First:
• This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
ullet Write your number (not your name) in the above space, and indicate whether you are a junior or a senior.
• For any given problem, you may use the back of the <i>previous</i> page for scratch work Put your final answers in the spaces provided.
• Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
• In order to receive full credit on a problem, solution methods must be complete, logical and understandable.
• The Multivariable Calculus and Linear Algebra Exam consists of Questions 1–8 that total to 200 points.
For Department Use Only:
Grader #1:
CRADER #2.

- 1. (a) [15 points] Find an equation of form ax + by + cz = d for the plane passing through (-2, -1, 4) that is perpendicular to the line with parametric equations x = 2t, y = 3t 1, z = 5 t.
 - (b) [15 points] Find an equation for the tangent plane to the sphere $x^2 + y^2 + z^2 = 3$ at the point (1, -1, 1).
- 2. Let $f(x,y) = \begin{cases} \frac{3x^3 5y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$
 - (a) [15 points] Compute $f_x(0,0)$ and $f_y(0,0)$.
 - (b) [10 points] Is f is continuous at (0,0)? Justify your answer.
- 3. [20 points] Find the volume of the solid region bounded by the surfaces y = 0, y = 3, $z = x^2$, and $z = 2 x^2$.
- 4. [25 points] Show that the line integral

$$\int_C z^2 dx + 2y dy + 2xz dz$$

depends only on the endpoints of the path C and not on the path taken between those endpoints.

- 5. Let V denote the vector space of polynomials of degree less than or equal to 2 with real coefficients. Let $T: V \to \mathbb{R}$ be a linear transformation.
 - (a) [5 points] Explain what is meant by the kernel, or $null\ space$, of T.
 - (b) [15 points] Prove that the kernel of T is a subspace of V.
 - (c) [10 points] What are the possible values of the nullity (that is, the dimension of the kernel) of T? Justify your answer.
- 6. [20 points] Suppose that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a basis for a vector space U. Is the set

$$\left\{\mathbf{u}_1-\mathbf{u}_2,\mathbf{u}_1+2\mathbf{u}_2\right\}$$

also a basis for U? Justify your answer.

- 7. (a) [5 points] Explain what it means to say that a real number λ is an eigenvalue of an $n \times n$ matrix A.
 - (b) [10 points] Calculate the eigenvalues of the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 3 & -1 \end{bmatrix}$.
 - (c) [15 points] Decide if the matrix A in part (b) is diagonalizable or not. Justify your answer.

- 8. (a) [5 points] Let U and W be vector spaces. Explain what it means to say that a linear transformation $S: U \to W$ is *invertible*.
 - (b) [5 points] Let $T:V\to V$ be a linear transformation, and let $\alpha=\{\mathbf{v}_1,\mathbf{v}_2\}$ be a basis for the vector space V. Suppose that the matrix of T with respect to α is

$$\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

Explain how you know that T is invertible.

(c) [10 points] Calculate $T^{-1}(\mathbf{v}_1)$. Write your answer as a linear combination of the vectors \mathbf{v}_1 and \mathbf{v}_2 .