Solutions to the Algebra problems on the Comprehensive Examination of January 27, 2017

1. [25 points] Let G be a group, let $H \subseteq G$ be a subgroup, and let $N \subseteq G$ be a normal subgroup. Define

$$
N H=\{n h: n \in N, h \in H\} .
$$

Prove that $N H$ is a subgroup of G.
Solution: (Nonempty): Since N and H are both nonempty, we may choose $x \in N$ and $h \in H$. Then $x h \in N H$, so $N H \neq \varnothing$.
(Closed under $*$): Given $x, y \in N H$, write $x=n_{1} h_{1}$ and $y=n_{2} h_{2}$, for some $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in H$. Since N is a normal subgroup of G, we have $h_{1} N=N h_{1}$. Thus, there is some $n_{3} \in N$ such that $h_{1} n_{2}=n_{3} h_{1}$. So

$$
x y=\left(n_{1} h_{1}\right)\left(n_{2} h_{2}\right)=n_{1}\left(h_{1} n_{2}\right) h_{2}=n_{1}\left(n_{3} h_{1}\right) h_{2}=\left(n_{1} n_{3}\right)\left(h_{1} h_{2}\right) \in N H,
$$

as desired, since $n_{1} n_{3} \in N$ and $h_{1} h_{2} \in H$.
(Closed under inverses): Given $x \in N H$, write $x=n h$ with $n \in N$ and $h \in H$. Since N is a normal subgroup of G, we have $h N=N h$. Thus, there is some $n_{1} \in N$ such that $n h=h n_{1}$. So

$$
x^{-1}=(n h)^{-1}=\left(h n_{1}\right)^{-1}=n_{1}^{-1} h^{-1} \in N H,
$$

as desired, since $n_{1}^{-1} \in N$ and $h^{-1} \in H$.
2. [17 points] Let G be a finite group, and suppose that there is an element $a \in G$ with the property that $a^{2}=a^{-1}$ but a is not the identity. Prove that the order of G is divisible by 3 .
Solution: Since $a^{2}=a^{-1}$, we have that $a\left(a^{2}\right)=a a^{-1}$, or equivalently, $a^{3}=e$, where e is the identity element in G. Then $o(a) \mid 3$, and hence $o(a)$ is either 1 or 3 . Since $a \neq e$, we have $o(a) \neq 1$, so the order of a must be 3. By (a corollary of) Lagrange's Theorem, $o(a)$ divides the order of G. That is, the order of G is divisible by 3 , as desired.
3. Consider the group S_{8} of permutations of the set $\{1,2,3,4,5,6,7,8\}$.
(a) [10 points] Find an element of S_{8} of order 15.
(Don't forget to explain or prove why it has order 15.)
Solution: Let $\sigma=(1,2,3)(4,5,6,7,8) \in S_{8}$. Since we have already written σ as a product of disjoint cycles, we have $o(\sigma)=\operatorname{lcm}(3,5)=15$.
(b) [15 points] Prove that there are no odd permutations in S_{8} of order 15.

Solution: Suppose $\sigma \in S_{8}$ satisfies $|\sigma|=15$. Write $\sigma=\alpha_{1} \alpha_{2} \cdots \alpha_{k}$ as a product of k disjoint cycles $\alpha_{1}, \ldots, \alpha_{k}$ for some positive integer k. Because these cycles are disjoint, we have

$$
15=o(\sigma)=\operatorname{lcm}\left(o\left(\alpha_{1}\right), o\left(\alpha_{2}\right), \ldots, o\left(\alpha_{k}\right)\right)
$$

By definition of the least common multiple, each $o\left(\alpha_{j}\right)$ divides 15 . Thus, each $o\left(\alpha_{j}\right) \in\{3,5,15\}$, since these are the only divisors of 15 which are greater than 1 . Hence, each α_{j} is a cycle of odd length. We know that any cycle of odd length is an even permutation. Thus, each α_{j} is even. Therefore, σ is also even, because it is the product of even permutations.
4. Let R be a ring.
(a) [8 points] Define what it means for a subset $I \subseteq R$ to be an ideal of R.

If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.
Solution: $I \subseteq R$ is an ideal if:

1. $I \neq \varnothing$.
2. For all $x, y \in I$, we have $x-y \in I$
3. For all $x \in I$ and $r \in R$, we have $r x \in I$ and $x r \in I$.
(b) [25 points] Suppose that R is commutative and has a multiplicative identity 1. Let $I \subseteq J \subseteq R$ be ideals, and suppose that the quotient ring R / I is a field.
If $I \subsetneq J$, prove that $1 \in J$.
(In fact, it is a Theorem from Math 350 that $J=R$ in this case, but you are only being asked to prove that $1 \in J$. In particular, however, you may not quote the $J=R$ theorem.)
Solution: Because $I \subsetneq J$, there exists $r \in J \backslash I$. By the coset relation, $r \notin I$ implies $I+r \neq I+0=0_{R / I}$.
Thus, $I+r$ is nonzero. By the definition of field, every nonzero element of R / I has a multiplicative inverse. Hence, there exists $I+s \in R / I$ such that

$$
(I+r)(I+s)=I+1
$$

So $I+r s=I+1$, and therefore $1-r s \in I \subseteq J$ by the coset relation.
Note that $r s \in J$, because J is an ideal of R and $r \in J$. Thus, since J is closed under addition, we have $1=(1-r s)+r s \in J$.

