Solutions to the Algebra problems on the Comprehensive Examination of January 27, 2017

1. [25 points] Let G be a group, let $H \subseteq G$ be a subgroup, and let $N \subseteq G$ be a **normal** subgroup. Define

$$NH = \{nh : n \in N, h \in H\}.$$

Prove that NH is a subgroup of G.

Solution: (Nonempty): Since N and H are both nonempty, we may choose $x \in N$ and $h \in H$. Then $xh \in NH$, so $NH \neq \emptyset$.

(Closed under *): Given $x, y \in NH$, write $x = n_1h_1$ and $y = n_2h_2$, for some $n_1, n_2 \in N$ and $h_1, h_2 \in H$. Since N is a normal subgroup of G, we have $h_1N = Nh_1$. Thus, there is some $n_3 \in N$ such that $h_1n_2 = n_3h_1$. So

$$xy = (n_1h_1)(n_2h_2) = n_1(h_1n_2)h_2 = n_1(n_3h_1)h_2 = (n_1n_3)(h_1h_2) \in NH,$$

as desired, since $n_1n_3 \in N$ and $h_1h_2 \in H$.

(Closed under inverses): Given $x \in NH$, write x = nh with $n \in N$ and $h \in H$. Since N is a normal subgroup of G, we have hN = Nh. Thus, there is some $n_1 \in N$ such that $nh = hn_1$. So

$$x^{-1} = (nh)^{-1} = (hn_1)^{-1} = n_1^{-1}h^{-1} \in NH,$$

as desired, since $n_1^{-1} \in N$ and $h^{-1} \in H$.

2. [17 points] Let G be a finite group, and suppose that there is an element $a \in G$ with the property that $a^2 = a^{-1}$ but a is not the identity. Prove that the order of G is divisible by 3.

Solution: Since $a^2 = a^{-1}$, we have that $a(a^2) = aa^{-1}$, or equivalently, $a^3 = e$, where e is the identity element in G. Then o(a)|3, and hence o(a) is either 1 or 3. Since $a \neq e$, we have $o(a) \neq 1$, so the order of a must be 3. By (a corollary of) Lagrange's Theorem, o(a) divides the order of G. That is, the order of G is divisible by 3, as desired.

- 3. Consider the group S_8 of permutations of the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$.
 - (a) [10 points] Find an element of S₈ of order 15.
 (Don't forget to explain or prove why it has order 15.)
 Solution: Let σ = (1,2,3)(4,5,6,7,8) ∈ S₈. Since we have already written σ as a product of disjoint cycles, we have o(σ) = lcm(3,5) = 15.
 - (b) [15 points] Prove that there are no odd permutations in S₈ of order 15.
 Solution: Suppose σ ∈ S₈ satisfies |σ| = 15. Write σ = α₁α₂ ··· α_k as a product of k disjoint cycles α₁,..., α_k for some positive integer k. Because these cycles are disjoint, we have

$$15 = o(\sigma) = \operatorname{lcm}(o(\alpha_1), o(\alpha_2), \dots, o(\alpha_k)).$$

By definition of the least common multiple, each $o(\alpha_j)$ divides 15. Thus, each $o(\alpha_j) \in \{3, 5, 15\}$, since these are the only divisors of 15 which are greater than 1. Hence, each α_j is a cycle of odd length. We know that any **cycle** of odd length is an even permutation. Thus, each α_j is even. Therefore, σ is also even, because it is the product of even permutations.

- 4. Let R be a ring.
 - (a) [8 points] Define what it means for a subset $I \subseteq R$ to be an **ideal** of R. If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.

Solution: $I \subseteq R$ is an ideal if:

- 1. $I \neq \emptyset$.
- 2. For all $x, y \in I$, we have $x y \in I$
- 3. For all $x \in I$ and $r \in R$, we have $rx \in I$ and $xr \in I$.
- (b) [25 points] Suppose that R is commutative and has a multiplicative identity 1. Let $I \subseteq J \subseteq R$ be ideals, and suppose that the quotient ring R/I is a field.

If $I \subsetneq J$, prove that $1 \in J$.

(In fact, it is a Theorem from Math 350 that J = R in this case, but you are only being asked to prove that $1 \in J$. In particular, however, you may **not** quote the J = R theorem.)

Solution: Because $I \subsetneq J$, there exists $r \in J \setminus I$. By the coset relation, $r \notin I$ implies $I + r \neq I + 0 = 0_{R/I}$.

Thus, I + r is nonzero. By the definition of field, every nonzero element of R/I has a multiplicative inverse. Hence, there exists $I + s \in R/I$ such that

$$(I+r)(I+s) = I+1.$$

So I + rs = I + 1, and therefore $1 - rs \in I \subseteq J$ by the coset relation.

Note that $rs \in J$, because J is an ideal of R and $r \in J$. Thus, since J is closed under addition, we have $1 = (1 - rs) + rs \in J$.