Amherst College Department of Mathematics and Statistics
Solutions to the Algebra problems on the Comprehensive Examination of January 26, 2018

1. (25 points) Let G_{1} and G_{2} be groups, let $H_{1} \subseteq G_{1}$ be a subgroup, and let $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism. The set

$$
H_{2}=\left\{\phi(x): x \in H_{1}\right\}
$$

is called the image of H_{1} under ϕ, sometimes denoted $\phi\left(H_{1}\right)$. Prove that H_{2} is a subgroup of G_{2}.
[This is a standard theorem in Math 350. You must actually prove it, not just quote it.]
Solution: It suffices to show that H_{2} is nonempty, closed under \cdot, and closed under ${ }^{-1}$.
Nonempty: Let e_{1} be the identity in G_{1}. Then e_{1} is also the identity in H_{1} (e.g. $e_{1} \in H_{1}$), so that $\phi\left(e_{1}\right) \in H_{2}$, hence H_{2} is nonempty. (In fact, because ϕ is a homomorphism, $\phi\left(e_{1}\right)=e_{2}$, where e_{2} is the identity in G_{2}.)
Closed under $\cdot:$ Let $z, w \in H_{2}$. Then there exists $x, y \in H_{1}$ such that $z=\phi(x), w=\phi(y)$. Since H_{1} is a subgroup, $x y \in H_{1}$, hence $\phi(x y) \in H_{2}$. But ϕ is a homomorphism, so that $\phi(x y)=\phi(x) \phi(y)$. Hence, $z w=\phi(x) \phi(y) \in H_{2}$, so that H_{2} is closed under \cdot.
Closed under ${ }^{-1}$: Let $z \in H_{2}$. Then there exists $x \in H_{1}$ such that $z=\phi(x)$. Since H_{1} is a subgroup, $x^{-1} \in H_{1}$, hence $\phi\left(x^{-1}\right) \in H_{2}$. But ϕ is a homomorphism, so that $\phi\left(x^{-1}\right)=\phi(x)^{-1}$. Hence, $z^{-1}=\phi(x)^{-1} \in H_{2}$, so that H_{2} is closed under ${ }^{-1}$.
2. (25 points) Let G be a group, let $N \subseteq G$ be a normal subgroup, and let $m \geq 1$ be an integer. Suppose that for every element $y \in G / N$, the order of y divides m. Prove that for all $x \in G$, we have $x^{m} \in N$.

Solution: Let $x \in G$. Then $x N \in G / N$. Let n be the order of $x N$ in G / N. By hypotheses, n divides m, so there is some integer k such that $n k=m$. Then $(x N)^{n}=N$ (the identity in $G / N)$, so that $x^{m} N=(x N)^{m}=(x N)^{n k}=\left((x N)^{n}\right)^{k}=N^{k}=N$. That is, $x^{m} N=N$, which implies $x^{m} \in N$ as claimed.
3. (25 points) Consider the group S_{8} of permutations of the set $\{1,2,3, \ldots, 8\}$. Let $\sigma, \tau \in S_{8}$ be the permutations

$$
\sigma=(1,2,3)(4,5,6) \quad \text { and } \quad \tau=(3,5)(1,7,8,4)
$$

(a) (7 points) Write $\sigma^{2} \tau$ as a product of disjoint cycles.

Solution: $\sigma^{2} \tau=(1,2,3)(4,5,6)(1,2,3)(4,5,6)(3,5)(1,7,8,4)=(1,7,8,6,5,2)(3,4)$
(b) (9 points) Compute the order of each of σ, τ, and $\sigma^{2} \tau$.

Solution: σ is given as the product of two disjoint 3 -cycles, so the order of σ is $\operatorname{lcm}(3,3)=3$. Similarly, τ is given as the product of a 2 -cycle and a 4 -cycle which are disjoint, so the order of σ is $\operatorname{lcm}(2,4)=4$. Finally, from part (a), $\sigma^{2} \tau$ is the product of a 6 -cycle and a 2 -cycle which are disjoint, so the order of $\sigma^{2} \tau$ is $\operatorname{lcm}(6,2)=6$.
(c) (9 points) Decide whether each of σ, τ, and $\sigma^{2} \tau$ is an even or odd permutation; don't forget to justify.

Solution: σ is a product of two 3 -cycles (which are both even) so is even + even $=$ even. τ is a product of a 2 -cycle (odd) and a 4 -cycle (odd), so is odd + odd $=$ even. $\sigma^{2} \tau$ is a product of a 6 -cycle (odd) and a 2 -cycle (odd), so is odd + odd $=$ even.
4. (25 points) Let R be a ring.
(a) (6 points) Define what it means for a subset $I \subseteq R$ to be an ideal of R. If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.
Solution: A subset $I \subseteq R$ is an ideal of R if

- $I \neq \emptyset$,
- $x, y \in I$ implies $x-y \in I$,
- $x \in I$ and $r \in R$ implies $x r \in I$ and $r x \in I$.
(b) (19 points) Let $I, J \subseteq R$ be ideals, and define

$$
I+J=\{x+y: x \in I \text { and } y \in J\} .
$$

Prove that $I+J$ is an ideal of R.
Solution: We will show $I+J$ satisfies the three conditions given in part (a).

- Since I and J are ideals, they are non-empty. In particular, $0_{R} \in I$ and $0_{R} \in J$ (where 0_{R} is the zero element in R). Then $0_{R}+0_{R}=0_{R} \in I+J$. Hence, $I+J \neq \emptyset$.
- Let $z_{1}, z_{2} \in I+J$. Then there exist $x_{1}, x_{2} \in I$ and $y_{1}, y_{2} \in J$ such that $z_{1}=x_{1}+y_{1}$ and $z_{2}=x_{2}+y_{2}$. Since I is an ideal, $x_{1}-x_{2} \in I$. Similarly, since J is an ideal, $y_{1}-y_{2} \in J$. Thus,

$$
z_{1}-z_{2}=\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)=\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) \in I+J
$$

- Let $r \in R$ and $z \in I+J$. Then there exists $x \in I, y \in J$ such that $z=x+y$. Since I is an ideal, $r x$ and $x r$ are in I. Similarly, since J is an ideal, $r y$ and $y r$ are in J. Thus, $r z=r(x+y)=r x+r y \in I+J$, and $z r=(x+y) r=x r+y r \in I+J$.

