

Numbi	ER:
	J16.

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Algebra Exam consists of Questions 1–4 that total to 100 points.

For Departm	ent Use Only:
Grader #1:	
Grader #2:	

Algebra

1. [25 points] Let G_1 and G_2 be groups, let $H_1 \subseteq G_1$ be a subgroup, and let $\phi: G_1 \to G_2$ be a homomorphism. The set

$$H_2 = \{\phi(x) : x \in H_1\}$$

is called the *image of* H_1 *under* ϕ , sometimes denoted $\phi(H_1)$.

Prove that H_2 is a subgroup of G_2 .

[This is a standard theorem in Math 350. You must actually prove it, not just quote it.]

2. [25 points] Let G be a group, let $N \subseteq G$ be a normal subgroup, and let $m \ge 1$ be an integer. Suppose that for every element $y \in G/N$, the order of y divides m.

Prove that for all $x \in G$, we have $x^m \in N$.

3. [25 points] Consider the group S_8 of permutations of the set $\{1, 2, 3, ..., 8\}$. Let $\sigma, \tau \in S_8$ be the permutations

$$\sigma = (1, 2, 3)(4, 5, 6)$$
 and $\tau = (3, 5)(1, 7, 8, 4)$.

- (a) [7 points] Write $\sigma^2 \tau$ as a product of **disjoint** cycles.
- (b) [9 points] Compute the **order** of each of σ , τ , and $\sigma^2 \tau$.
- (c) [9 points] Decide whether each of σ , τ , and $\sigma^2 \tau$ is an **even** or **odd** permutation; don't forget to justify.
- 4. [25 points] Let R be a ring.
 - (a) [6 points] Define what it means for a subset $I \subseteq R$ to be an **ideal** of R. If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.
 - (b) [19 points] Let $I, J \subseteq R$ be ideals, and define

$$I+J=\{x+y:x\in I\text{ and }y\in J\}.$$

Prove that I + J is an ideal of R.