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1. (a) [5 points] Let A be a nonempty subset of R. State the definition of what it means
for b € R to be an upper bound for A.

Solution: The number b € R is an upper bound for A if for every element a € A
it follows that a < b.

(b) [20 points] Suppose that A and B are nonempty subsets of the real numbers. Prove

that if sup A < sup B, then there exists an element b € B that is an upper bound
for A.

Solution: Since sup B is the least upper bound for B, we know thatany number
less than sup B is not an upper bound for B. Therefore, since sup A < sup B, we
have that sup A is not an upper bound for B. That is, there must exists a b € B
such that b > sup A. Therefore for every a € A, a < sup A < b and b is an upper
bound for A.

2. (a) [ points| State the definition of a Cauchy sequence.

Solution: Let (a,) be a sequence of real numbers. We say that (a,) is a Cauchy
sequence if for every € > 0 there exists an N € N such that whenever m,n > N it
follows that |a, — a,,| < e.

(b) [5 points] State the definition of a bounded sequence.

Solution: Let (a,) be a sequence of real numbers. We say that (a,) is bounded if
there exists an M > 0 such that for evey n € N it follows that |a,| < M.

(c) [15 points] Prove that every Cauchy sequence is bounded.

Solution: Suppose that (a,) is a Cauchy sequence. From the definition we know
that for every € > 0 there exists an NV € N such that whenever m,n > N it follows
that |a, — a,| < €. In particular, choosing € = 1, we know that there exists an
N € N such that whenever m,n > N it follows that |a, — a,,| < 1. Therefore, for
all n > N we have that |a, — ay| < 1. By the triangle inequality this implies that
whenever n > N it follows |a,| < |ax|+ 1. Letting

M = max{|a1|, |as], ..., |an_1|,|an| + 1}
we see that for all n € N it follows that |a,| < M and the sequence (a,) is bounded.

3. (a) [5 points] Let f: A — R be a function. Using the e-d definition, define what it
means for f to be continuous at ¢ € A.

Solution: The function f: A — R is continuous at ¢ € A if for every ¢ > 0
there exists a 6 > 0 such that whenever |z — ¢| < 6 and = € A it follows that

[f(z) = flo)] <e
(b) [20 points] Suppose that f: A — R is continuous at ¢ € A. Prove using the above
definition that |f]| is continuous at c.
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Solution: Let € > 0 be given. Since f is continuous at ¢ € A there exists a § > 0
such that whenever |z — ¢| < § and = € A it follows that |f(z) — f(c)| < e. This
together with a corollary to the triangle inequality shows that whenever |z —¢| < ¢
and x € A it follows that ||f(x)| — |f(z)|] < |f(z) — f(c)| < e. Therefore |f]| is

continous are ¢ € A.
4. (a) [5 points] State the Weierstrass M-test.

Solution: For each n € N, let f,, be a function defined on a set A C R, and let
M,, > 0 be a real number such that

()] < M,

for all x € A. If Z M, converges, then Z fn converges uniformly on A.
n=1 n=1

(b) [20 points] Use part (a) to show that for any r € (0,1) the function f(z) = Z "
n=1
is well-defined and continuous on [—r,7].

Solution: Let f,(z) = 2™ and r € (0,1). Then for each n € N, f,, is a function
defined on [—r,r| and if we let M,, = ™ > 0 then

()] <"

for all x € [—r,r|. Further, the series

oo oo
> M= 1"
n=1 n=1

o0

is a convergent geometric series. Thus by The Weierstrass M-test, Z fn converges
n=1

uniformly to a function, call it f, on [—r,r]. Since each f, is continuous on [—r,7]

(and in fact on all of R) and the convergence is uniform we know that the limit

function f is also continuous on [—7,r].
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