## Amherst College <br> Department of Mathematics and Statistics

# Comprehensive Examination <br> $\triangleleft$ Analysis $\triangleright$ <br> January 2018 

## Number:

$\qquad$
Senior: $\qquad$
Junior: $\qquad$

## Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space, and indicate whether you are a junior or a senior.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable.
- The Analysis Exam consists of Questions 1-4 that total to 100 points.


## For Department Use Only:

Grader \#1: $\qquad$
Grader \#2: $\qquad$

1. (a) [5 points] Let $A$ be a nonempty subset of $\mathbf{R}$. State the definition of what it means for $b \in \mathbf{R}$ to be an upper bound for $A$.

Solution: The number $b \in \mathbb{R}$ is an upper bound for $A$ if for every element $a \in A$ it follows that $a \leq b$.
(b) [20 points] Suppose that $A$ and $B$ are nonempty subsets of the real numbers. Prove that if $\sup A<\sup B$, then there exists an element $b \in B$ that is an upper bound for $A$.

Solution: Since $\sup B$ is the least upper bound for $B$, we know thatany number less than $\sup B$ is not an upper bound for $B$. Therefore, $\operatorname{since} \sup A<\sup B$, we have that $\sup A$ is not an upper bound for $B$. That is, there must exists a $b \in B$ such that $b>\sup A$. Therefore for every $a \in A, a \leq \sup A<b$ and $b$ is an upper bound for $A$.
2. (a) [5 points] State the definition of a Cauchy sequence.

Solution: Let $\left(a_{n}\right)$ be a sequence of real numbers. We say that $\left(a_{n}\right)$ is a Cauchy sequence if for every $\epsilon>0$ there exists an $N \in \mathbf{N}$ such that whenever $m, n \geq N$ it follows that $\left|a_{n}-a_{m}\right|<\epsilon$.
(b) [5 points] State the definition of a bounded sequence.

Solution: Let $\left(a_{n}\right)$ be a sequence of real numbers. We say that $\left(a_{n}\right)$ is bounded if there exists an $M>0$ such that for evey $n \in \mathbf{N}$ it follows that $\left|a_{n}\right| \leq M$.
(c) [15 points] Prove that every Cauchy sequence is bounded.

Solution: Suppose that $\left(a_{n}\right)$ is a Cauchy sequence. From the definition we know that for every $\epsilon>0$ there exists an $N \in \mathbf{N}$ such that whenever $m, n \geq N$ it follows that $\left|a_{n}-a_{m}\right|<\epsilon$. In particular, choosing $\epsilon=1$, we know that there exists an $N \in \mathbf{N}$ such that whenever $m, n \geq N$ it follows that $\left|a_{n}-a_{m}\right|<1$. Therefore, for all $n \geq N$ we have that $\left|a_{n}-a_{N}\right|<1$. By the triangle inequality this implies that whenever $n \geq N$ it follows $\left|a_{n}\right|<\left|a_{N}\right|+1$. Letting

$$
M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N-1}\right|,\left|a_{N}\right|+1\right\}
$$

we see that for all $n \in \mathbf{N}$ it follows that $\left|a_{n}\right| \leq M$ and the sequence $\left(a_{n}\right)$ is bounded.
3. (a) [5 points] Let $f: A \rightarrow \mathbf{R}$ be a function. Using the $\epsilon-\delta$ definition, define what it means for $f$ to be continuous at $c \in A$.

Solution: The function $f: A \rightarrow \mathbf{R}$ is continuous at $c \in A$ if for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $|x-c|<\delta$ and $x \in A$ it follows that $|f(x)-f(c)|<\epsilon$.
(b) [20 points] Suppose that $f: A \rightarrow \mathbf{R}$ is continuous at $c \in A$. Prove using the above definition that $|f|$ is continuous at $c$.

Solution: Let $\epsilon>0$ be given. Since $f$ is continuous at $c \in A$ there exists a $\delta>0$ such that whenever $|x-c|<\delta$ and $x \in A$ it follows that $|f(x)-f(c)|<\epsilon$. This together with a corollary to the triangle inequality shows that whenever $|x-c|<\delta$ and $x \in A$ it follows that $||f(x)|-|f(x)|| \leq|f(x)-f(c)|<\epsilon$. Therefore $|f|$ is continous are $c \in A$.
4. (a) [5 points] State the Weierstrass $M$-test.

Solution: For each $n \in \mathbf{N}$, let $f_{n}$ be a function defined on a set $A \subseteq \mathbf{R}$, and let $M_{n}>0$ be a real number such that

$$
\left|f_{n}(x)\right| \leq M_{n}
$$

for all $x \in A$. If $\sum_{n=1}^{\infty} M_{n}$ converges, then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on $A$.
(b) [20 points] Use part (a) to show that for any $r \in(0,1)$ the function $f(x)=\sum_{n=1}^{\infty} x^{n}$ is well-defined and continuous on $[-r, r]$.

Solution: Let $f_{n}(x)=x^{n}$ and $r \in(0,1)$. Then for each $n \in \mathbf{N}, f_{n}$ is a function defined on $[-r, r]$ and if we let $M_{n}=r^{n}>0$ then

$$
\left|f_{n}(x)\right| \leq r^{n}
$$

for all $x \in[-r, r]$. Further, the series

$$
\sum_{n=1}^{\infty} M_{n}=\sum_{n=1}^{\infty} r^{n}
$$

is a convergent geometric series. Thus by The Weierstrass M-test, $\sum_{n=1}^{\infty} f_{n}$ converges uniformly to a function, call it $f$, on $[-r, r]$. Since each $f_{n}$ is continuous on $[-r, r]$ (and in fact on all of $\mathbf{R}$ ) and the convergence is uniform we know that the limit function $f$ is also continuous on $[-r, r]$.

