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Analysis January 2018

1. (a) [5 points] Let A be a nonempty subset of R. State the definition of what it means
for b € R to be an upper bound for A.

(b) [20 points| Suppose that A and B are nonempty subsets of the real numbers. Prove
that if sup A < sup B, then there exists an element b € B that is an upper bound
for A.

a) [ points| State the definition of a Cauchy sequence.

b

)
)

¢) [15 points] Prove that every Cauchy sequence is bounded.
)

2. (
(b) [5 points] State the definition of a bounded sequence.

(
3.

a) [5 points| Let f: A — R be a function. Using the e-d definition, define what it
means for f to be continuous at ¢ € A.

(b) [20 points] Suppose that f: A — R is continuous at ¢ € A. Prove using the above
definition that |f]| is continuous at c.

4. (a) [5 points] State the Weierstrass M-test.

(b) [20 points] Use part (a) to show that for any r € (0,1) the function f(z) = Z:r;”
n=1

is well-defined and continuous on [—r,r].
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