Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 26, 2018

1. [25 points] Find an equation for the plane that passes through the point $(1,3,5)$ and contains the line

$$
x=5 t, y=1+t, z=3-t
$$

Solution: Letting $t=0$ and $t=1$, we find that the points $(0,1,3)$ and $(5,2,2)$ are on the plane. We also have that $(1,3,5)$ is on the plane. We compute the vectors

$$
\begin{aligned}
& \langle 5,2,2\rangle-\langle 0,1,3\rangle=\langle 5,1,-1\rangle \\
& \langle 5,2,2\rangle-\langle 1,3,5\rangle=\langle 4,-1,-3\rangle
\end{aligned}
$$

The normal vector is

$$
\begin{aligned}
\boldsymbol{n} & =\langle 5,1,-1\rangle \times\langle 4,-1,-3\rangle=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
5 & 1 & -1 \\
4 & -1 & -3
\end{array}\right|=\boldsymbol{i}\left|\begin{array}{cc}
1 & -1 \\
-1 & -3
\end{array}\right|-\boldsymbol{j}\left|\begin{array}{cc}
5 & -1 \\
4 & -3
\end{array}\right|+\boldsymbol{k}\left|\begin{array}{cc}
5 & 1 \\
4 & -1
\end{array}\right| \\
& =-4 \boldsymbol{i}+11 \boldsymbol{j}-9 \boldsymbol{k} .
\end{aligned}
$$

Thus, the plane has equation $\langle-4,11,-9\rangle \cdot\langle x-1, y-3, z-5\rangle=0$ which is equivalent to $-4(x-1)+11(y-3)-9(z-5)=0$.
2. [25 points] Let $f(x, y)=x^{4}-4 x y+2 y^{2}$. Find all critical points of f, and classify each as a local maximum, local minimum, or saddle point.
Solution: We compute

$$
f_{x}(x, y)=4 x^{3}-4 y, \quad f_{y}(x, y)=-4 x+4 y
$$

Setting the first of these equations equal to 0 we have that $y=x^{3}$. We substitute this into the second equation and set it equal to 0 to obtain

$$
-4 x+4 x^{3}=0 \Leftrightarrow 4 x\left(x^{2}-1\right)=0 \Leftrightarrow 4 x(x-1)(x+1)=0 \Rightarrow x \in\{0, \pm 1\}
$$

With these three x values, using that $y=x^{3}$, we have the three critical points

$$
(0,0),(1,1),(-1,-1)
$$

We now compute

$$
f_{x x}(x, y)=12 x^{2}, \quad f_{y y}(x, y)=4, \quad f_{x y}(x, y)=f_{y x}(x, y)=-4
$$

and

$$
D(x, y)=\left|\begin{array}{cc}
f_{x x}(x, y) & f_{x y}(x, y) \\
f_{y x}(x, y) & f_{y y}(x, y)
\end{array}\right|=\left|\begin{array}{cc}
12 x^{2} & -4 \\
-4 & 4
\end{array}\right|=48 x^{2}-16 .
$$

Then

$$
\begin{aligned}
& D(0,0)=-16<0 \Rightarrow(0,0) \text { is a saddle point } \\
& D(1,1)=32>0 \Rightarrow(1,1) \text { is a local min, } \\
& D(-1,-1)=32>0 \Rightarrow(-1,-1) \text { is a local min. }
\end{aligned}
$$

3. [25 points] Calculate the volume of the region in the first octant that lies both inside the sphere $x^{2}+y^{2}+z^{2}=2$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.
Note. The first octant is the region where x, y and z are all ≥ 0.
Solution: The sphere and cone intersect when

$$
2=x^{2}+y^{2}+z^{2}=x^{2}+y^{2}+\left(\sqrt{x^{2}+y^{2}}\right)^{2}=2 x^{2}+2 y^{2},
$$

that is, when

$$
x^{2}+y^{2}=1
$$

We seek the volume of the region above the cone and inside the sphere in the first octant, so we integrate $\sqrt{2-x^{2}-y^{2}}-\sqrt{x^{2}+y^{2}}$. We will give a solution using polar coordinates: let $x=r \cos \theta, y=r \sin \theta$, so that $x^{2}+y^{2}=r^{2}$ and $d A=r d r d \theta$. Thus, the volume of the region is given by

$$
\begin{aligned}
V & =\iint_{x^{2}+y^{2} \leq 1}\left(\sqrt{2-x^{2}-y^{2}}-\sqrt{x^{2}+y^{2}}\right) d A \\
& =\int_{\theta=0}^{\frac{\pi}{2}} \int_{0}^{1}\left(\sqrt{2-r^{2}}-r\right) r d r d \theta \\
& =\left(\int_{\theta=0}^{\frac{\pi}{2}} d \theta\right) \cdot\left(\int_{0}^{1}\left(\sqrt{2-r^{2}}-r\right) r d r\right) \\
& =\frac{\pi}{2} \int_{0}^{1}\left(\sqrt{2-r^{2}}-r\right) r d r \\
& =\frac{\pi}{2} \int_{0}^{1} \sqrt{2-r^{2}} r d r-\frac{\pi}{2} \int_{0}^{1} r^{2} d r
\end{aligned}
$$

To evaluate the first integral above, we let $u=2-r^{2}$ so that $d u=-2 r d r$. The second integral is evaluated directly. Thus, we have that

$$
V=\frac{\pi}{2} \int_{2}^{1} \sqrt{u} \cdot \frac{d u}{-2}-\frac{\pi}{6}=-\frac{\pi}{4} \cdot \frac{2}{3}\left(1-2^{\frac{3}{2}}\right)-\frac{\pi}{6}=\frac{\pi}{3}(\sqrt{2}-1) .
$$

4. [25 points] Compute $\int_{C} y d x+x d y$ where C is the boundary curve of the region bounded by $y=\sqrt{x}, y=0$ and $x=16$, traversed in the counterclockwise direction.
Note. This integral may also be written as $\int_{C}\langle y, x\rangle \cdot d \boldsymbol{r}$
Solution: The functions $f(x, y)=y$ and $g(x, y)=x$ are defined everywhere, and have continuous partial derivatives, so by Green's Theorem, with D equal to the domain bounded by C, this integral equals

$$
\iint_{D}\left(\frac{\partial}{\partial x} x-\frac{\partial}{\partial y} y\right) d A=\iint_{D}(1-1) d A=\iint_{D} 0 d A=0 .
$$

5. (a) [10 points] Suppose V is a vector space. Explain what it means to say that a subset U of V is a subspace.

Solution: It means that U is itself a vector space when given the same operations of addition and scalar multiplication as V.
More explicitly, U should be non-empty, closed under addition and closed under scalar multiplication.
(b) [5 points] Let $V=\mathbb{R}^{2}$ and let U be the subset consisting of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ with $x+2 y=1$. Say whether U is a subspace of V or not, and justify your answer.

Solution: A subspace must contain the zero object in the vector space, but $0+2 \cdot 0 \neq$ 1 , so U does not contain the zero vector in \mathbb{R}^{2}. So U is not a subspace.
(c) [10 points] Give two other examples of subsets of \mathbb{R}^{2}, one that is a subspace, and one that is not a subspace. Justify your answers.

Solution: Many options.
6. (a) [5 points] Explain what it means to say that a subset S of a vector space V is a basis of V.

Solution: It means that S is linear independent, and is a spanning set for V.
(b) [20 points] Give a basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\left[\begin{array}{c}
1 \\
0 \\
2 \\
-1
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
0 \\
-4 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
1 \\
2 \\
-1
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
-1 \\
2 \\
-1
\end{array}\right] .
$$

You should explain how you know that your answer really is a basis; namely, you should relate your answer to the definition you gave in part (a) for full credit.

Solution: The first and third vectors here form a basis for that subspace. To see that these span the subspace, we note that the second vector is a scalar multiple of the first, and the fourth vector is a linear combination of the first and third.
To see that they are linearly independent, suppose that

$$
a_{1}\left[\begin{array}{c}
1 \\
0 \\
2 \\
-1
\end{array}\right]+a_{2}\left[\begin{array}{c}
0 \\
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
2 a_{1}+2 a_{2} \\
-a_{1}-a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

and so $a_{1}=a_{2}=0$. So these two vectors are linearly independent.
Alternatively, on could show that the matrix made

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & 2 \\
0 & 0 & 1 & -1 \\
2 & -4 & 2 & 2 \\
-1 & 2 & -1 & -1
\end{array}\right]
$$

is row equivalent to

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the column space of this matrix is spanned by the first and the third vectors above and those two vectors are linearly independent.
7. [25 points] Let A be the matrix

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 2 & 0 \\
-6 & -1 & -3
\end{array}\right]
$$

Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$.

Solution: First we find eigenvalues:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 2-\lambda & 0 \\
-6 & -1 & -3-\lambda
\end{array}\right] & =(2-\lambda)[(2-\lambda)(-3-\lambda)-(1)(-6)] \\
& =(2-\lambda)\left(-6+\lambda+\lambda^{2}+6\right) \\
& =(2-\lambda) \lambda(\lambda+1)
\end{aligned}
$$

Therefore, the eigenvalues are $\lambda=-1,0,2$. [10 points for finding the eigenvalues] Next we find an eigenvector for each eigenvalue by solving $(A-\lambda I) \mathbf{v}=\mathbf{0}$:

- for $\lambda=-1$:

$$
\left[\begin{array}{ccc}
3 & 1 & 1 \\
0 & 3 & 0 \\
-6 & -1 & -2
\end{array}\right] \mathbf{v}=\mathbf{0}
$$

has solution, for example, $\mathbf{v}=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]$

- for $\lambda=0$:

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 2 & 0 \\
-6 & -1 & -3
\end{array}\right] \mathbf{v}=\mathbf{0}
$$

has solution, for example, $\mathbf{v}=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]$

- for $\lambda=2$:

$$
\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 0 \\
-6 & -1 & -5
\end{array}\right] \mathbf{v}=\mathbf{0}
$$

has solution, for example, $\mathbf{v}=\left[\begin{array}{c}2 \\ 3 \\ -3\end{array}\right]$
Therefore, examples of the required matrices are

$$
D=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

and

$$
P=\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 0 & 3 \\
-3 & -2 & -3
\end{array}\right]
$$

8. [25 points] Let V be a finite-dimensional vector space, and let $T: V \rightarrow V$ be a linear transformation. Prove that 0 is an eigenvalue of T if and only if the image (i.e., range) of T is not equal to V.

Solution: By definition, 0 is an eigenvalue of T if and only if there is a nonzero vector \mathbf{v} such that $T(\mathbf{v})=0 \mathbf{v}=\mathbf{0}$. This is the case if and only if the kernel of T contains a nonzero vector. This in turn is the case if and only if the nullity of T is more than 0 . By the Rank-Nullity Theorem, we know that the rank of T plus the nullity of T is equal to the $\operatorname{dim} V$. Therefore, the nullity is more than 0 if and only if the rank is less than $\operatorname{dim} V$, which is the case if and only if the image of T is not equal to V.

