Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 26, 2018

1. [25 points] Find an equation for the plane that passes through the point (1,3,5) and contains the line

$$x = 5t, y = 1 + t, z = 3 - t.$$

Solution: Letting t = 0 and t = 1, we find that the points (0, 1, 3) and (5, 2, 2) are on the plane. We also have that (1, 3, 5) is on the plane. We compute the vectors

$$\langle 5, 2, 2 \rangle - \langle 0, 1, 3 \rangle = \langle 5, 1, -1 \rangle \langle 5, 2, 2 \rangle - \langle 1, 3, 5 \rangle = \langle 4, -1, -3 \rangle$$

The normal vector is

$$\boldsymbol{n} = \langle 5, 1, -1 \rangle \times \langle 4, -1, -3 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 1 & -1 \\ 4 & -1 & -3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 1 & -1 \\ -1 & -3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 5 & -1 \\ 4 & -3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 5 & 1 \\ 4 & -1 \end{vmatrix}$$
$$= -4\mathbf{i} + 11\mathbf{j} - 9\mathbf{k}.$$

Thus, the plane has equation $\langle -4, 11, -9 \rangle \cdot \langle x - 1, y - 3, z - 5 \rangle = 0$ which is equivalent to -4(x-1) + 11(y-3) - 9(z-5) = 0.

2. [25 points] Let $f(x, y) = x^4 - 4xy + 2y^2$. Find all critical points of f, and classify each as a local maximum, local minimum, or saddle point.

Solution: We compute

$$f_x(x,y) = 4x^3 - 4y, \quad f_y(x,y) = -4x + 4y.$$

Setting the first of these equations equal to 0 we have that $y = x^3$. We substitute this into the second equation and set it equal to 0 to obtain

$$-4x + 4x^3 = 0 \Leftrightarrow 4x(x^2 - 1) = 0 \Leftrightarrow 4x(x - 1)(x + 1) = 0 \Rightarrow x \in \{0, \pm 1\}.$$

With these three x values, using that $y = x^3$, we have the three critical points

$$(0, 0), (1, 1), (-1, -1).$$

We now compute

$$f_{xx}(x,y) = 12x^2$$
, $f_{yy}(x,y) = 4$, $f_{xy}(x,y) = f_{yx}(x,y) = -4$,

and

$$D(x,y) = \begin{vmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{vmatrix} = \begin{vmatrix} 12x^2 & -4 \\ -4 & 4 \end{vmatrix} = 48x^2 - 16.$$

Then

 $D(0,0) = -16 < 0 \Rightarrow (0,0)$ is a saddle point, $D(1,1) = 32 > 0 \Rightarrow (1,1)$ is a local min, $D(-1,-1) = 32 > 0 \Rightarrow (-1,-1)$ is a local min. 3. [25 points] Calculate the volume of the region in the first octant that lies both inside the sphere $x^2 + y^2 + z^2 = 2$ and above the cone $z = \sqrt{x^2 + y^2}$. Note. The first octant is the region where x, y and z are all ≥ 0 .

Solution: The sphere and cone intersect when

$$2 = x^{2} + y^{2} + z^{2} = x^{2} + y^{2} + (\sqrt{x^{2} + y^{2}})^{2} = 2x^{2} + 2y^{2},$$

that is, when

$$x^2 + y^2 = 1.$$

We seek the volume of the region above the cone and inside the sphere in the first octant, so we integrate $\sqrt{2-x^2-y^2} - \sqrt{x^2+y^2}$. We will give a solution using polar coordinates: let $x = r \cos \theta$, $y = r \sin \theta$, so that $x^2 + y^2 = r^2$ and $dA = r dr d\theta$. Thus, the volume of the region is given by

$$V = \iint_{x^2 + y^2 \le 1} \left(\sqrt{2 - x^2 - y^2} - \sqrt{x^2 + y^2} \right) dA$$

= $\int_{\theta=0}^{\frac{\pi}{2}} \int_0^1 \left(\sqrt{2 - r^2} - r \right) r dr d\theta$
= $\left(\int_{\theta=0}^{\frac{\pi}{2}} d\theta \right) \cdot \left(\int_0^1 \left(\sqrt{2 - r^2} - r \right) r dr \right)$
= $\frac{\pi}{2} \int_0^1 \left(\sqrt{2 - r^2} - r \right) r dr$
= $\frac{\pi}{2} \int_0^1 \sqrt{2 - r^2} r dr - \frac{\pi}{2} \int_0^1 r^2 dr$

To evaluate the first integral above, we let $u = 2 - r^2$ so that du = -2rdr. The second integral is evaluated directly. Thus, we have that

$$V = \frac{\pi}{2} \int_{2}^{1} \sqrt{u} \cdot \frac{du}{-2} - \frac{\pi}{6} = -\frac{\pi}{4} \cdot \frac{2}{3} \left(1 - 2^{\frac{3}{2}}\right) - \frac{\pi}{6} = \frac{\pi}{3} \left(\sqrt{2} - 1\right).$$

4. [25 points] Compute $\int_C y \, dx + x \, dy$ where C is the boundary curve of the region bounded by $y = \sqrt{x}$, y = 0 and x = 16, traversed in the counterclockwise direction. Note. This integral may also be written as $\int_C \langle y, x \rangle \cdot d\mathbf{r}$

Solution: The functions f(x, y) = y and g(x, y) = x are defined everywhere, and have continuous partial derivatives, so by Green's Theorem, with D equal to the domain bounded by C, this integral equals

$$\iint_D \left(\frac{\partial}{\partial x}x - \frac{\partial}{\partial y}y\right) dA = \iint_D (1-1)dA = \iint_D 0 \ dA = 0.$$

5. (a) [10 points] Suppose V is a vector space. Explain what it means to say that a subset U of V is a subspace.

Solution: It means that U is itself a vector space when given the same operations of addition and scalar multiplication as V.

More explicitly, U should be non-empty, closed under addition and closed under scalar multiplication.

(b) [5 points] Let $V = \mathbb{R}^2$ and let U be the subset consisting of all vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ with x + 2y = 1. Say whether U is a subspace of V or not, and justify your answer.

Solution: A subspace must contain the zero object in the vector space, but $0+2 \cdot 0 \neq 1$, so U does not contain the zero vector in \mathbb{R}^2 . So U is *not* a subspace.

(c) [10 points] Give two other examples of subsets of \mathbb{R}^2 , one that is a subspace, and one that is *not* a subspace. Justify your answers.

Solution: Many options.

6. (a) [5 points] Explain what it means to say that a subset S of a vector space V is a basis of V.

Solution: It means that S is linear independent, and is a spanning set for V.

(b) [20 points] Give a basis for the subspace of \mathbb{R}^4 spanned by the vectors

1		$\begin{bmatrix} -2 \end{bmatrix}$		$\begin{bmatrix} 0 \end{bmatrix}$		[2]	
0		0		1		-1	
2	,	-4	,	2	,	2	•
[-1]		$\left\lfloor 2 \right\rfloor$		[-1]		$\begin{bmatrix} -1 \end{bmatrix}$	

You should explain how you know that your answer really is a basis; namely, you should relate your answer to the definition you gave in part (a) for full credit.

Solution: The first and third vectors here form a basis for that subspace. To see that these span the subspace, we note that the second vector is a scalar multiple of the first, and the fourth vector is a linear combination of the first and third.

To see that they are linearly independent, suppose that

$$a_1 \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix} + a_2 \begin{bmatrix} 0\\1\\2\\-1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}.$$

Then

$$\begin{bmatrix} a_1 \\ a_2 \\ 2a_1 + 2a_2 \\ -a_1 - a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

and so $a_1 = a_2 = 0$. So these two vectors are linearly independent. Alternatively, on could show that the matrix made

$$\begin{bmatrix} 1 & -2 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 2 & -4 & 2 & 2 \\ -1 & 2 & -1 & -1 \end{bmatrix}$$

is row equivalent to

$$\begin{bmatrix} 1 & -2 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Therefore the column space of this matrix is spanned by the first and the third vectors above and those two vectors are linearly independent.

7. [25 points] Let A be the matrix

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ -6 & -1 & -3 \end{bmatrix}$$

Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$.

Solution: First we find eigenvalues:

$$\det \begin{bmatrix} 2-\lambda & 1 & 1\\ 0 & 2-\lambda & 0\\ -6 & -1 & -3-\lambda \end{bmatrix} = (2-\lambda)[(2-\lambda)(-3-\lambda) - (1)(-6)]$$
$$= (2-\lambda)(-6+\lambda+\lambda^2+6)$$
$$= (2-\lambda)\lambda(\lambda+1).$$

Therefore, the eigenvalues are $\lambda = -1, 0, 2$. [10 points for finding the eigenvalues] Next we find an eigenvector for each eigenvalue by solving $(A - \lambda I)\mathbf{v} = \mathbf{0}$:

• for $\lambda = -1$:

$$\begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 0 \\ -6 & -1 & -2 \end{bmatrix} \mathbf{v} = \mathbf{0}$$

has solution, for example, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$

• for
$$\lambda = 0$$
:

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ -6 & -1 & -3 \end{bmatrix} \mathbf{v} = \mathbf{0}$$
has solution, for example, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$
• for $\lambda = 2$:

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ -6 & -1 & -5 \end{bmatrix} \mathbf{v} = \mathbf{0}$$
has solution, for example, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ -3 \end{bmatrix}$

Therefore, examples of the required matrices are

	-1	0	0
D =	0	0	0
	0	0	2
	-		-

and

	1	1	2]	
P =	0	0	3	
	-3	-2	-3	

8. [25 points] Let V be a finite-dimensional vector space, and let $T: V \to V$ be a linear transformation. Prove that 0 is an eigenvalue of T if and only if the image (i.e., range) of T is not equal to V.

Solution: By definition, 0 is an eigenvalue of T if and only if there is a nonzero vector \mathbf{v} such that $T(\mathbf{v}) = 0\mathbf{v} = \mathbf{0}$. This is the case if and only if the kernel of T contains a nonzero vector. This in turn is the case if and only if the nullity of T is more than 0. By the Rank-Nullity Theorem, we know that the rank of T plus the nullity of T is equal to the dim V. Therefore, the nullity is more than 0 if and only if the rank is less than dim V, which is the case if and only if the image of T is not equal to V.