

January 2018
Number:
Read This First:
• This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
\bullet Write your number (not your name) in the above space.
• For any given problem, you may use the back of the <i>previous</i> page for scratch work. Put your final answers in the spaces provided.
• Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
• In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
\bullet The Multivariable Calculus and Linear Algebra Exam consists of Questions 1–8 that total to 200 points.
For Department Use Only:
Grader #1:
Grader #2:

1. [25 points] Find an equation for the plane that passes through the point (1,3,5) and contains the line

$$x = 5t, y = 1 + t, z = 3 - t.$$

- 2. [25 points] Let $f(x,y) = x^4 4xy + 2y^2$. Find all critical points of f, and classify each as a local maximum, local minimum, or saddle point.
- 3. [25 points] Calculate the volume of the region in the first octant that lies both inside the sphere $x^2 + y^2 + z^2 = 2$ and above the cone $z = \sqrt{x^2 + y^2}$. Note. The first octant is the region where x, y and z are all ≥ 0 .
- 4. [25 points] Compute $\int_C y \, dx + x \, dy$ where C is the boundary curve of the region bounded by $y = \sqrt{x}$, y = 0 and x = 16, traversed in the counterclockwise direction.

 Note. This integral may also be written as $\int_C \langle y, x \rangle \cdot d\mathbf{r}$
- 5. (a) [10 points] Suppose V is a vector space. Explain what it means to say that a subset U of V is a subspace.
 - (b) [5 points] Let $V = \mathbb{R}^2$ and let U be the subset consisting of all vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ with x + 2y = 1. Say whether U is a subspace of V or not, and justify your answer.
 - (c) [10 points] Give two other examples of subsets of \mathbb{R}^2 , one that is a subspace, and one that is not a subspace. Justify your answers.
- 6. (a) [5 points] Explain what it means to say that a subset S of a vector space V is a basis of V.
 - (b) [20 points] Give a basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$\begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ -4 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 2 \\ -1 \end{bmatrix}.$$

You should explain how you know that your answer really is a basis; namely, you should relate your answer to the definition you gave in part (a) for full credit.

7. [25 points] Let A be the matrix

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ -6 & -1 & -3 \end{bmatrix}.$$

Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$.

8. [25 points] Let V be a finite-dimensional vector space, and let $T:V\to V$ be a linear transformation. Prove that 0 is an eigenvalue of T if and only if the image (i.e., range) of T is not equal to V.