Amherst College Department of Mathematics and Statistics Solutions to Comprehensive Examination: Algebra February, 2019

1. (25 points) Let G be a group, let $H \subseteq G$ be a subgroup, and define the normalizer of H to be

$$N(H) = \{ x \in G : x^{-1}Hx = H \}.$$

- (a) (18 points) Prove that N(H) is a subgroup of G.
- (b) (7 points) It is a fact, which you may assume, that H is a subgroup of N(H). Prove that H is a normal subgroup of N(H).

Proof. (a): (Nonempty): We have $e \in N(H)$, since $e^{-1}He = eH = H$. (Closure): Given $x, y \in N(H)$, we have

$$(xy)^{-1}H(xy) = y^{-1}x^{-1}Hxy = y^{-1}(x^{-1}Hx)y = y^{-1}Hy = H,$$

so $xy \in H$.

(Inverses): Given $x \in H$, we have $x^{-1}Hx = H$. Multiplying by x on the left and x^{-1} on the right, then, we get $H = xHx^{-1}$. Thus,

$$(x^{-1})^{-1}Hx^{-1} = xHx^{-1} = H,$$

QED (a)

QED

and so $x^{-1} \in H$. Thus, N(H) is a subgroup of G

(b): We are told H is a subgroup of N(H). Given $x \in N(H)$, we have $x^{-1}Hx = H$, exactly the condition we need. Thus, H is indeed a *normal* subgroup of N(H). QED (b)

2. (25 points) Let G_1, G_2 be groups, let $H_2 \subseteq G_2$ be a subgroup, and let $\phi : G_1 \to G_2$ be a homomorphism. Define

$$H_1 = \{ x \in G_1 : \phi(x) \in H_2 \}.$$

It is a fact, which you may assume, that H_1 is a subgroup of G_1 . Prove that for any $x, y \in G_1$, $H_1x = H_1y$ if and only if $H_2\phi(x) = H_2\phi(y)$.

Proof. (\Longrightarrow) Given $x, y \in G_1$ such that $H_1x = H_1y$, we have $xy^{-1} \in H_1$. Thus, $\phi(xy^{-1}) \in H_2$. Since ϕ is a homomorphism, we have $\phi(x)\phi(y)^{-1} \in H_2$. That is, $H_2\phi(x) = H_2\phi(y)$. (\Leftarrow) Given $x, y \in G_1$ such that $H_2\phi(x) = H_2\phi(y)$, we have $\phi(x)\phi(y)^{-1} \in H_2$. That is, $\phi(xy^{-1}) \in H_2$, since ϕ is a homomorphism.

Thus, $xy^{-1} \in H_1$, i.e., $H_1x = H_1y$.

3. (25 points) Consider the group S_6 of permutations of the set $\{1, 2, 3, 4, 5, 6\}$. Let $\sigma \in S_6$ be the permutation

$$\sigma = (3\ 6\ 2)(1\ 6\ 3)(1\ 4\ 2\ 5)(4\ 6).$$

- (a) (9 points) Write σ as a product of **disjoint** cycles.
- (b) (7 points) Compute the order of σ .
- (c) (9 points) For each i = 1, 2, 3, 4, 5, let $\tau_i = (i \ 6)\sigma$. For each such i, determine whether τ_i is σ even or odd.

Answers. (a): $\sigma = (1 \ 4 \ 6 \ 3)(2 \ 5)$

(b): $o(\sigma) = \text{lcm}(4, 2) = 4$.

(c): σ is the product of a 4-cycle (odd) and 2-cycle (also odd), so σ itself is even. Meanwhile, each (*i* 6) is a 2-cycle and hence odd. So each τ_i is an odd composed with an even and hence is **odd**.

- 4. (25 points) Let R be a ring.
 - (a) (6 points) Define what it means for a subset $I \subseteq R$ to be an ideal of R. If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.

(b) (19 points) Let R be the ring of continuous functions $f : \mathbb{R} \to \mathbb{R}$ from the real line to itself, under the usual operations of multiplication and addition of functions. (You may assume that R is indeed a ring under these operations.) Let

$$I = \{ f \in R : f(3) = f(5) = 0 \}.$$

Prove that I is an ideal of R.

Answer/Proof. (a): To say $I \subseteq R$ is an ideal of R means:

- *I* is nonempty,
- for all $x, y \in I$, we have $x + y \in I$,
- for all $x \in I$, we have $-x \in I$,
- for all $x \in I$ and $a \in R$, we have $ax, xa \in I$.

(b): **Proof.** (Nonempty): We have $0_R \in I$ since $0_R(3) = 0$ and $0_R(5) = 0$. (Closed under +): Given $f, g \in I$, we have

$$(f+g)(3) = f(3) + g(3) = 0 + 0 = 0$$
 and $(f+g)(5) = f(3) + g(5) = 0 + 0 = 0$,
so $f + g \in I$.

(Closed under -): Given $f \in I$, we have

$$(-f)(3) = -f(3) = -0 = 0$$
 and $(-f)(5) = -f(5) = -0 = 0$,

so $-f \in I$.

(Ideal property): Given $f \in I$ and $g \in R$, we have

$$(fg)(3) = f(3)g(3) = 0 \cdot g(3) = 0$$
 and $(fg)(5) = f(5)g(5) = 0 \cdot g(5) = 0$,

so $fg \in I$. We also have

$$(gf)(3) = g(3)f(3) = g(3) \cdot 0 = 0$$
 and $(gf)(5) = g(5)f(5) = g(5) \cdot 0 = 0$,
so $gf \in I$.
QED (b)