Amherst College
 Department of Mathematics and Statistics

Comprehensive Examination
 \triangleleft AnALYSIS \triangleright
 January 2019

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1-4 that total to 100 points.

For Department Use Only:

Grader \#1: \qquad
Grader \#2: \qquad

1. (a) [5 points] Let U be a subset of the real numbers \mathbf{R}. State the definition of what it means for U to be an open set.
Solution: A set U is open if for every $x \in U$ there exists an $\epsilon>0$ such that $V_{\epsilon}(x) \subseteq U$. Here $V_{\epsilon}(x)=(x-\epsilon, x+\epsilon)$.
(b) [10 points] Suppose that $U_{1}, U_{2}, \ldots, U_{n}$ are open subsets of \mathbf{R}. Using your definition in part (a), prove that the intersection of these open sets is open; namely,

$$
U=\bigcap_{i=1}^{n} U_{i} \text { is open }
$$

Solution: Let $x \in U=\bigcap_{i=1}^{n} U_{i}$. Since $x \in U_{i}$ and U_{i} is open for every $1 \leq i \leq n$, we know that for each i there exists an $\epsilon_{i}>0$ such that $V_{\epsilon_{i}}(x) \subseteq U_{i}$. Let $\epsilon=$ $\min \left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$. Since $\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ is a finite set of positive real numbers we have that $\epsilon>0$ and by construction for each $1 \leq i \leq n$ we have $V_{\epsilon}(x) \subseteq V_{\epsilon_{i}}(x) \subseteq U_{i}$. Therefore, by the definition of intersection we have that $V_{\epsilon}(x) \subseteq U=\bigcap_{i=1}^{n} U_{i}$ and thus U is open.
(c) [10 points] Give an example which shows that the intersection of an infinite number of open sets in \mathbf{R} may not be open.
Solution: Using the Archimedean property we can show that

$$
\bigcap_{i=1}^{\infty}\left(0,1+\frac{1}{i}\right)=(0,1] .
$$

2. (a) [5 points] Complete the following definition: A sequence of real numbers $\left\{a_{n}\right\}$ converges to the limit L if ...
Solution: for every $\epsilon>0$ there exists an $N \in \mathbf{N}$ such that whenever $n \geq N$ it follows that $\left|a_{n}-L\right|<\epsilon$.
(b) [5 points] Complete the following definition: A sequence of real numbers $\left\{a_{n}\right\}$ is Cauchy if ...
Solution: for every $\epsilon>0$ there exists an $N \in \mathbf{N}$ such that whenever $m, n \geq N$ it follows that $\left|a_{m}-a_{n}\right|<\epsilon$.
(c) [15 points] Prove that if the sequence $\left\{a_{n}\right\}$ converges (to L say), then $\left\{a_{n}\right\}$ is Cauchy.
Solution: Suppose that $\left\{a_{n}\right\}$ converges to $L \in \mathbf{R}$ and let $\epsilon>0$ be given. Since $a_{n} \rightarrow L$ there exists and $N \in \mathbf{N}$ such that whenever $n \geq N$ it follows that

$$
\left|a_{n}-L\right|<\frac{\epsilon}{2} .
$$

Therefore, whenever $m, n \geq N$ it follows that

$$
\left|a_{n}-a_{m}\right|=\left|a_{n}-L+L-a_{m}\right| \leq\left|a_{n}-L\right|+\left|L-a_{m}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Thus, $\left\{a_{n}\right\}$ is Cauchy.
3. (a) [5 points] State the Intermediate Value Theorem.

Solution: Let $f:[1, b] \rightarrow \mathbb{R}$ be continuous. If L is a real number satisfying $f(a)<L<f(b)$ or $f(b)<L<f(a)$, then there exists a $c \in(a, b)$ such that $f(c)=L$.
(b) [10 points] Prove that the polynomial $f(x)=x^{3}-3 x^{2}+1$ has at least one root. Recall that a root is a real number z such that $f(z)=0$.
Solution: Notice that

$$
\begin{aligned}
f(-1) & =(-1)^{3}-3(-1)^{2}+1=-3, \text { and } \\
f(0) & =0^{3}-3(0)+1=1 .
\end{aligned}
$$

Since f is a polynomial it is continuous on $[-1,0]$ and $f(-1)=-3<0<1=f(0)$. Therefore by the Intermediate Value Theorem there exits a real number $c \in(-1,0)$ such that $f(c)=0$.
(c) [10 points] Prove that $f(x)=x^{3}-3 x^{2}+1$ has three real roots. (You may assume that f has no more than three (real) roots.)
Solution: Notice that

$$
\begin{aligned}
f(-1) & =(-1)^{3}-3(-1)^{2}+1=-3, f(0) \quad=0^{3}-3(0)+1=1, \\
f(1) & =(1)^{3}-3(1)^{2}+1=-1, \text { and } \\
f(3) & =(3)^{3}-3(3)^{2}+1=1 .
\end{aligned}
$$

Since f is a polynomial, we know it is actually continuous on the real line and so we can apply the Intermediate Value Theorem to f on the intervals $[-1,0],[0,1]$, and $[1,3]$ we get that there are real numbers $c_{1} \in(-1,0), c_{2} \in(0,1)$, and $c_{3} \in(1,3)$ such that $f\left(c_{1}\right)=f\left(c_{2}\right)=f\left(c_{3}\right)=0$.
Thus, f has at least 3 real roots and we know it can't have any more than 3 roots. So f has exactly 3 real roots.
4. (a) [5 points] State the Heine-Borel Theorem.

Solution: Let $K \subseteq \mathbf{R}$. The following are equivalent:
i) The set K is a compact set. I.e., every sequence contained in K has a convergent subsequence that converges in K.
ii) The set K is closed and bounded
iii) Every open cover of K has a finite subcover.
(b) [20 points] Suppose that K is a compact subset of \mathbf{R} and that $f: K \longrightarrow \mathbf{R}$ is a continuous function. Under these assumptions, pick one of the following two results and prove it. Please clearly state which result you're aiming to prove.
(i) The image of K under $f, f(K)=\{f(x) \in \mathbf{R} \mid x \in K\}$, is compact.

Solution: Let $\left\{y_{n}\right\}$ be a sequence such that for all $n \in \mathbf{N}$, we have $y_{n} \in f(K)$. By the definition of $f(K)$ we have that for each $n \in \mathbf{N}$ there exists an $x_{n} \in K$
such that $f\left(x_{n}\right)=y_{n}$. Since K is compact and $\left\{x_{n}\right\}$ is a sequence contained in K we know that there is a subsequence $x_{n_{k}}$ that converges in K. Suppose that $\lim x_{n_{k}}=\alpha \in K$. Since f is continuous on K and since $\left\{x_{n}\right\}$ and α are contained in K, we have that $\lim f\left(x_{n_{k}}\right)=f(\alpha) \in f(K)$. Therefore $\left\{y_{n_{k}}\right\}$ is a subsequence of $\left\{y_{n}\right\}$ that converges in $f(k)$. So $f(K)$ is compact by definition.
(ii) f is uniformly continuous.

Solution: Suppose towards a contradiction that f is not uniformly continuous on K. Then there exists sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in K and an $\epsilon_{0}>0$ such that $\lim \left|x_{n}-y_{n}\right|=0$ and for all $n \in \mathbf{N},\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$. Since K is compact there is a subsequence of $\left\{x_{n}\right\}$, call it $\left\{x_{n_{k}}\right\}$, that converges to some $x \in K$. Using the algebraic limit theorem we have that the corresponding subsequence $\left\{y_{n_{k}}\right\}$ also converges to $x \in K$ since

$$
\lim y_{n_{k}}=\lim \left(y_{n_{k}}-x_{n_{k}}\right)+x_{n_{k}}=\lim \left(y_{n_{k}}-x_{n_{k}}\right)+\lim x_{n_{k}}=0+x=x .
$$

Next, because f is continuous on K and $\left\{x_{n_{k}}\right\},\left\{y_{n_{k}}\right\}$, and x are all in K we have that $\lim f\left(x_{n_{k}}\right)=f(x)$ and $\lim f\left(y_{n_{k}}\right)=f(x)$. Again using the algebraic limit theorem we have

$$
\lim \left(f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right)=f(x)-f(x)=0
$$

contradicting the assumption that for all $n \in \mathbf{N},\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$.

