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1. (a) [5 points] Let U be a subset of the real numbers R. State the definition of what it
means for U to be an open set.

Solution: A set U is open if for every x ∈ U there exists an ε > 0 such that
Vε(x) ⊆ U . Here Vε(x) = (x− ε, x+ ε).

(b) [10 points] Suppose that U1, U2, . . . , Un are open subsets of R. Using your definition
in part (a), prove that the intersection of these open sets is open; namely,

U =
n⋂
i=1

Ui is open

Solution: Let x ∈ U =
⋂n
i=1 Ui. Since x ∈ Ui and Ui is open for every 1 ≤ i ≤ n,

we know that for each i there exists an εi > 0 such that Vεi(x) ⊆ Ui. Let ε =
min{ε1, . . . , εn}. Since {ε1, . . . , εn} is a finite set of positive real numbers we have
that ε > 0 and by construction for each 1 ≤ i ≤ n we have Vε(x) ⊆ Vεi(x) ⊆ Ui.
Therefore, by the definition of intersection we have that Vε(x) ⊆ U =

⋂n
i=1 Ui and

thus U is open.

(c) [10 points] Give an example which shows that the intersection of an infinite number
of open sets in R may not be open.

Solution: Using the Archimedean property we can show that

∞⋂
i=1

(
0, 1 +

1

i

)
= (0, 1].

2. (a) [5 points] Complete the following definition: A sequence of real numbers {an} con-
verges to the limit L if . . .

Solution: for every ε > 0 there exists an N ∈ N such that whenever n ≥ N it
follows that |an − L| < ε.

(b) [5 points] Complete the following definition: A sequence of real numbers {an} is
Cauchy if . . .

Solution: for every ε > 0 there exists an N ∈ N such that whenever m,n ≥ N it
follows that |am − an| < ε.

(c) [15 points] Prove that if the sequence {an} converges (to L say), then {an} is
Cauchy.

Solution: Suppose that {an} converges to L ∈ R and let ε > 0 be given. Since
an → L there exists and N ∈ N such that whenever n ≥ N it follows that

|an − L| <
ε

2
.

Therefore, whenever m,n ≥ N it follows that

|an − am| = |an − L+ L− am| ≤ |an − L|+ |L− am| <
ε

2
+
ε

2
= ε.

Thus, {an} is Cauchy.
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3. (a) [5 points] State the Intermediate Value Theorem.

Solution: Let f : [1, b] → R be continuous. If L is a real number satisfying
f(a) < L < f(b) or f(b) < L < f(a), then there exists a c ∈ (a, b) such that
f(c) = L.

(b) [10 points] Prove that the polynomial f(x) = x3 − 3x2 + 1 has at least one root.
Recall that a root is a real number z such that f(z) = 0.

Solution: Notice that

f(−1) = (−1)3 − 3(−1)2 + 1 = −3, and

f(0) = 03 − 3(0) + 1 = 1.

Since f is a polynomial it is continuous on [−1, 0] and f(−1) = −3 < 0 < 1 = f(0).
Therefore by the Intermediate Value Theorem there exits a real number c ∈ (−1, 0)
such that f(c) = 0.

(c) [10 points] Prove that f(x) = x3 − 3x2 + 1 has three real roots. (You may assume
that f has no more than three (real) roots.)

Solution: Notice that

f(−1) = (−1)3 − 3(−1)2 + 1 = −3, f(0) = 03 − 3(0) + 1 = 1,

f(1) = (1)3 − 3(1)2 + 1 = −1, and

f(3) = (3)3 − 3(3)2 + 1 = 1.

Since f is a polynomial, we know it is actually continuous on the real line and so
we can apply the Intermediate Value Theorem to f on the intervals [−1, 0], [0, 1],
and [1, 3] we get that there are real numbers c1 ∈ (−1, 0), c2 ∈ (0, 1), and c3 ∈ (1, 3)
such that f(c1) = f(c2) = f(c3) = 0.

Thus, f has at least 3 real roots and we know it can’t have any more than 3 roots.
So f has exactly 3 real roots.

4. (a) [5 points] State the Heine-Borel Theorem.

Solution: Let K ⊆ R. The following are equivalent:

i) The set K is a compact set. I.e., every sequence contained inK has a convergent
subsequence that converges in K.

ii) The set K is closed and bounded

iii) Every open cover of K has a finite subcover.

(b) [20 points] Suppose that K is a compact subset of R and that f : K −→ R is a
continuous function. Under these assumptions, pick one of the following two results
and prove it. Please clearly state which result you’re aiming to prove.

(i) The image of K under f , f(K) = {f(x) ∈ R | x ∈ K}, is compact.

Solution: Let {yn} be a sequence such that for all n ∈ N, we have yn ∈ f(K).
By the definition of f(K) we have that for each n ∈ N there exists an xn ∈ K
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such that f(xn) = yn. Since K is compact and {xn} is a sequence contained in
K we know that there is a subsequence xnk

that converges in K. Suppose that
limxnk

= α ∈ K. Since f is continuous on K and since {xn} and α are contained
in K, we have that lim f(xnk

) = f(α) ∈ f(K). Therefore {ynk
} is a subsequence of

{yn} that converges in f(k). So f(K) is compact by definition.

(ii) f is uniformly continuous.

Solution: Suppose towards a contradiction that f is not uniformly continuous
on K. Then there exists sequences {xn} and {yn} in K and an ε0 > 0 such that
lim |xn − yn| = 0 and for all n ∈ N, |f(xn) − f(yn)| ≥ ε0. Since K is compact
there is a subsequence of {xn}, call it {xnk

}, that converges to some x ∈ K. Using
the algebraic limit theorem we have that the corresponding subsequence {ynk

} also
converges to x ∈ K since

lim ynk
= lim(ynk

− xnk
) + xnk

= lim(ynk
− xnk

) + lim xnk
= 0 + x = x.

Next, because f is continuous on K and {xnk
}, {ynk

}, and x are all in K we have
that lim f(xnk

) = f(x) and lim f(ynk
) = f(x). Again using the algebraic limit

theorem we have
lim(f(xnk

)− f(ynk
)) = f(x)− f(x) = 0

contradicting the assumption that for all n ∈ N, |f(xn)− f(yn)| ≥ ε0.
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