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Analysis February 2019

1. (a) [5 points] Let U be a subset of the real numbers R. State the definition of what it
means for U to be an open set.

(b) [10 points] Suppose that U1, U2, . . . , Un are open subsets of R. Using your definition
in part (a), prove that the intersection of these open sets is open; namely,

U =
n⋂

i=1

Ui is open

(c) [10 points] Give an example which shows that the intersection of an infinite number
of open sets in R may not be open.

2. (a) [5 points] Complete the following definition: A sequence of real numbers {an} con-
verges to the limit L if . . .

(b) [5 points] Complete the following definition: A sequence of real numbers {an} is
Cauchy if . . .

(c) [15 points] Prove that if the sequence {an} converges (to L say), then {an} is
Cauchy.

3. (a) [5 points] State the Intermediate Value Theorem.

(b) [10 points] Prove that the polynomial f(x) = x3 − 3x2 + 1 has at least one root.
Recall that a root is a real number z such that f(z) = 0.

(c) [10 points] Prove that f(x) = x3 − 3x2 + 1 has three real roots. (You may assume
that f has no more than three (real) roots.)

4. (a) [5 points] State the Heine-Borel Theorem.

(b) [20 points] Suppose that K is a compact subset of R and that f : K −→ R is a
continuous function. Under these assumptions, pick ONE and ONLY ONE of the
following two results and prove it. Please clearly state which result you’re aiming
to prove.
(i) The image of K under f , f(K) = {f(x) ∈ R | x ∈ K}, is compact.
(ii) f is uniformly continuous.
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