

Number:			

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1–4 that total to 100 points.

For Department Use Only:
Grader #1:
Grader #2:

Analysis February 2019

1. (a) [5 points] Let U be a subset of the real numbers \mathbf{R} . State the definition of what it means for U to be an open set.

(b) [10 points] Suppose that U_1, U_2, \dots, U_n are open subsets of **R**. Using your definition in part (a), prove that the intersection of these open sets is open; namely,

$$U = \bigcap_{i=1}^{n} U_i$$
 is open

- (c) [10 points] Give an example which shows that the intersection of an infinite number of open sets in **R** may not be open.
- 2. (a) [5 points] Complete the following definition: A sequence of real numbers $\{a_n\}$ converges to the limit L if . . .
 - (b) [5 points] Complete the following definition: A sequence of real numbers $\{a_n\}$ is Cauchy if . . .
 - (c) [15 points] Prove that if the sequence $\{a_n\}$ converges (to L say), then $\{a_n\}$ is Cauchy.
- 3. (a) [5 points] State the Intermediate Value Theorem.
 - (b) [10 points] Prove that the polynomial $f(x) = x^3 3x^2 + 1$ has at least one root. Recall that a root is a real number z such that f(z) = 0.
 - (c) [10 points] Prove that $f(x) = x^3 3x^2 + 1$ has three real roots. (You may assume that f has no more than three (real) roots.)
- 4. (a) [5 points] State the Heine-Borel Theorem.
 - (b) [20 points] Suppose that K is a compact subset of \mathbf{R} and that $f: K \longrightarrow \mathbf{R}$ is a continuous function. Under these assumptions, pick ONE and ONLY ONE of the following two results and prove it. Please clearly state which result you're aiming to prove.
 - (i) The image of K under f, $f(K) = \{f(x) \in \mathbf{R} \mid x \in K\}$, is compact.
 - (ii) f is uniformly continuous.