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1. A fly is buzzing around a room in which the temperature is given in degrees Celsius by
T(z,y,2) =2 +y* + 32> + 17,

Suppose that the fly is currently at the point (1,2, —1).

(a) [10 points| The fly wants to warm up. In what direction should it fly? Find a
vector pointing in the direction in which the temperature increases most rapidly
from the fly’s current position.

(b) [15 points] Suppose the fly moves from the point (1,2, —1) in the direction of the
vector (4,0, 3). Find the directional derivative of the temperature in that direction.
Will the fly feel warmer or colder?

Solution: We need the gradient:
VT(x,y,z) = (2x,2y,62).
VT(1,2,-1) = (2,4, —6).

(a) The temperature increases most rapidly in the direction of the gradient, VT'(1,2,—1) =
(2,4, —6). Any vector that is a positive scalar multiple of this vector is valid here.

(b) The directional derivative is

Du(1,2,—1) = VT(1,2,—1) - (4,0,3)/5
= (2,4,—6) - (4,0,3)/5
—(8+0—18)/5= -2,

so decreasing (getting colder in that direction).

2. [25 points] Let f(x,y) = 22° — 322y — 1222 — 3y®. Find all critical points of f, and
classify each as a local maximum, local minimum, or saddle point.

Solution: Take the partial derivatives of f(z,y) = 22° — 322y — 1222 — 3y* and set equal
to zero to find the critical points. f, = —3z? — 6y = 0 leads to y = —?/2. Substituting
into f, = 622 — 6zy — 24x = 0 leads to

37° + 62° — 24z = 3x(2® + 2v — 8) = 3x(x — 2)(z +4) = 0.
The solutions are x = 0, 2, —4, so the critical points are
(07 0)7 (27 _2)7 <_47 _8)

Use the Second Partials Test to classify the points:

D(0,0) =144 > 0 and f,,(0,0) = =24 < 0, so (0,0) is a local maximum.
D(2,-2) = =72 < 0 so (2, —2) is a saddle point.

D(—4,-8) = —24-18 < 0 so (—4, —8) is also a saddle point.
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3. [25 points| Find the volume of the region that lies both inside the sphere 22 +13*+ 2% = 6
and above the paraboloid z = 22 + 3%

Solution: Working in polar or cylindrical coordinates is easiest for this problem. Find
where the sphere r? + 22 = 6 intersects the paraboloid z = 7? by finding the positive
solution of 22 + z — 6 = 0, which is z = 2, corresponding to r = v/2.

27 \/i
V:/ / (V6 —r2 —r?)rdrdf
o Jo
V2
_ L o 1y
—27?( 3(6 ) d

= 27(2v/6 — 11/3)

0
4. [25 points] Compute [, 2*y dx + zy*>dy where C' is the triangle with vertices (0,0),
(1,0), and (1, 1), traversed in the counterclockwise direction.

Solution: Use Green’s Theorem to convert to easier double integral:

1 T 9 1
/xzydermyzdy:/ / (yz—xQ)dyd:c:——/ P dr = —1/6
c 0o Jo 3 Jo

5. [25 points|] Let V' be a vector space and let a« = {vy, vy, v3} and f = {wy, wy, w3} each
be a basis for V. Suppose that

w1 = V] + 2vy + 3vg
Wo =V + V2+3V3
W3 = 2V1 + 5V3.
Let v € V such that v = a;vy + asvsy + agvs for some aq, as,a3 € R. Find by, by, b3 € R

(in terms of ay, aq, and ag) such that v = bywy + byws + byws.

Solution: From the given information we have

1 1 2
Hzg=12 1 0
3 3 5
Further
5 1 -2
2= (8" =|-10 -1 4
3 0 -1
(431
Thus, if v = a;vy + agvy + agvs, then [v], = |a2| and
as
bl 5 1 —2 ay 5@1 + ag — 2(13
bl =[V]g=[I[P[Vla = | =10 —1 4| |az| = |—10a; — ay + 4a3
b3 3 0 —1 as 3&1 — asg
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So

b1 = 5&1 + a9 — 2&3
bQ = —1OCL1 — Qg + 4(13

bg = 3(11 — as.

6. [25 points| Let V be a vector space and let S = {vy,va,..., v} C V be linearly inde-
pendent. Prove that for any v € V such that v ¢ Span(.S) the set SU{v} is also linearly

independent.
Solution: Suppose a,ay,...,a; € R such that
av + a;vy + asve + - -+ +apvy = 0. (1)
We aim to show that a = a1 =--- =a; = 0.
Case 1: a = 0.

In this case, Equation (1) becomes
aiviy + agve + - - - + Qv = 0,

and since S is linearly independent we have that a; = --- = ay = 0 completing this case.

Case 2: a # 0.
In this case we can rewrite Equation (1) to be

(_Tc“)v1+<_7@)v2+---+(_7%>vk:v- (2)

Equation 2 gives us that v € Span(S) contradicting our assumption that v ¢ Span(S)
and completing this case.

7. Let Py = {a+bx+cx?® | a,b, c € R} be the vector space of polynomials of degree at most
2 and let T : R® — P, be the linear map given by

1 1 1
T (0 =14+z+2% T|[]1 =z, and T | |1 =1+ a°
0 0 1
1
(a) [10 points] Find 7" | |2
3

(b) [5 points] State the definition of an isomorphism between vector spaces.

(c) [10 points] Is T" an isomorphism? Justify your answer.

Solution:
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(a) Notice that

1 1 1 1
2| =— (0] — |1| +3 |1
3 0 0 1
Therefore,
1 1 1 1
T2 |=T7|-1|0] —|1] +3 |1
3 0 0 1
1 1 1
=T |0| | - 1 1
0 0 1
—(1+x+2%) — (2) + 3(1 + 2%) = 2 — 22 + 22°.

(b) A function S : V' — W between two vector spaces is an isomorphism if it is a linear
map that is both one-to-one and onto.
(c) The map above is not an isomorphism since it is not one-to-one (or onto). Notice

that
0 1 1 1 1
T -1 =T 0] — |1 =T 0 -T 1
-1 0 1 0 1

0 1
and |—1| # |1
|
1 01
8 Let A= {0 1 0f.
1 01

(a) [10 points] Find all the eigenvalues of A.
(b) [15 points] If possible, find a basis for R? consisting only of eigenvectors of A. If
this is not possible, explain why.

Solution:
(a) We start by computing the characteristic polynomial of A.
1—Xx 0 1 ‘1 ) 1 ‘

det(A=X)=] 0 1-X 0 |[=(1-2)
1 0 1-2) 1 1-4

=(1=N[1=X)>=1] ==A1=N)(2-N).
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From this we see that the eigenvalues are A = 0, 1, 2 since these are the roots of the
characteristic polynomial.

(b) Here we compute a basis for each eigenspace by solving the homogenous system of
equation (A — AI)x = 0 for each eigenvalue A. Doing this yields

-1 0 1
Ey = Span 0 , F1 = Span 1 , F's = Span 0
1 0 1
Therefore,
-1 0 1
o= 01,1, |0
1 0 1

is a basis for R? that is made of eigenvectors of A.
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