Comprehensive and Honors Qualifying Examination \triangleleft Multivariable Calculus and Linear Algebra \triangleright January 2019

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Multivariable Calculus and Linear Algebra Exam consists of Questions 1-8 that total to 200 points.

For Department Use Only:
Grader \#1: \qquad
Grader \#2: \qquad

1. A fly is buzzing around a room in which the temperature is given in degrees Celsius by

$$
T(x, y, z)=x^{2}+y^{2}+3 z^{2}+17
$$

Suppose that the fly is currently at the point $(1,2,-1)$.
(a) [10 points] The fly wants to warm up. In what direction should it fly? Find a vector pointing in the direction in which the temperature increases most rapidly from the fly's current position.
(b) [15 points] Suppose the fly moves from the point $(1,2,-1)$ in the direction of the vector $\langle 4,0,3\rangle$. Find the directional derivative of the temperature in that direction. Will the fly feel warmer or colder?

Solution: We need the gradient:

$$
\begin{aligned}
& \nabla T(x, y, z)=\langle 2 x, 2 y, 6 z\rangle \\
& \nabla T(1,2,-1)=\langle 2,4,-6\rangle
\end{aligned}
$$

(a) The temperature increases most rapidly in the direction of the gradient, $\nabla T(1,2,-1)=$ $\langle 2,4,-6\rangle$. Any vector that is a positive scalar multiple of this vector is valid here.
(b) The directional derivative is

$$
\begin{aligned}
D_{\mathbf{u}}(1,2,-1) & =\nabla T(1,2,-1) \cdot\langle 4,0,3\rangle / 5 \\
& =\langle 2,4,-6\rangle \cdot\langle 4,0,3\rangle / 5 \\
& =(8+0-18) / 5=-2,
\end{aligned}
$$

so decreasing (getting colder in that direction).
2. [25 points] Let $f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2}$. Find all critical points of f, and classify each as a local maximum, local minimum, or saddle point.

Solution: Take the partial derivatives of $f(x, y)=2 x^{3}-3 x^{2} y-12 x^{2}-3 y^{2}$ and set equal to zero to find the critical points. $f_{y}=-3 x^{2}-6 y=0$ leads to $y=-x^{2} / 2$. Substituting into $f_{x}=6 x^{2}-6 x y-24 x=0$ leads to

$$
3 x^{3}+6 x^{2}-24 x=3 x\left(x^{2}+2 x-8\right)=3 x(x-2)(x+4)=0
$$

The solutions are $x=0,2,-4$, so the critical points are

$$
(0,0),(2,-2),(-4,-8)
$$

Use the Second Partials Test to classify the points:
$D(0,0)=144>0$ and $f_{x x}(0,0)=-24<0$, so $(0,0)$ is a local maximum.
$D(2,-2)=-72<0$ so $(2,-2)$ is a saddle point.
$D(-4,-8)=-24 \cdot 18<0$ so $(-4,-8)$ is also a saddle point.
3. [25 points] Find the volume of the region that lies both inside the sphere $x^{2}+y^{2}+z^{2}=6$ and above the paraboloid $z=x^{2}+y^{2}$.

Solution: Working in polar or cylindrical coordinates is easiest for this problem. Find where the sphere $r^{2}+z^{2}=6$ intersects the paraboloid $z=r^{2}$ by finding the positive solution of $z^{2}+z-6=0$, which is $z=2$, corresponding to $r=\sqrt{2}$.

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}}\left(\sqrt{6-r^{2}}-r^{2}\right) r d r d \theta \\
& =\left.2 \pi\left(-\frac{1}{3}\left(6-r^{2}\right)^{3 / 2}-\frac{1}{4} r^{4}\right)\right|_{0} ^{\sqrt{2}}=2 \pi(2 \sqrt{6}-11 / 3)
\end{aligned}
$$

4. [25 points] Compute $\int_{C} x^{2} y d x+x y^{2} d y$ where C is the triangle with vertices $(0,0)$, $(1,0)$, and $(1,1)$, traversed in the counterclockwise direction.

Solution: Use Green's Theorem to convert to easier double integral:

$$
\int_{C} x^{2} y d x+x y^{2} d y=\int_{0}^{1} \int_{0}^{x}\left(y^{2}-x^{2}\right) d y d x=-\frac{2}{3} \int_{0}^{1} x^{3} d x=-1 / 6
$$

5. [25 points] Let V be a vector space and let $\alpha=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $\beta=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ each be a basis for V. Suppose that

$$
\begin{aligned}
& \mathbf{w}_{1}=\mathbf{v}_{1}+2 \mathbf{v}_{2}+3 \mathbf{v}_{3} \\
& \mathbf{w}_{2}=\mathbf{v}_{1}+\mathbf{v}_{2}+3 \mathbf{v}_{3} \\
& \mathbf{w}_{3}=2 \mathbf{v}_{1}+5 \mathbf{v}_{3} .
\end{aligned}
$$

Let $\mathbf{v} \in V$ such that $\mathbf{v}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}$ for some $a_{1}, a_{2}, a_{3} \in \mathbb{R}$. Find $b_{1}, b_{2}, b_{3} \in \mathbb{R}$ (in terms of a_{1}, a_{2}, and a_{3}) such that $\mathbf{v}=b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+b_{3} \mathbf{w}_{3}$.

Solution: From the given information we have

$$
[I]_{\beta}^{\alpha}=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 0 \\
3 & 3 & 5
\end{array}\right]
$$

Further

$$
[I]_{\alpha}^{\beta}=\left([I]_{\alpha}^{\beta}\right)^{-1}=\left[\begin{array}{ccc}
5 & 1 & -2 \\
-10 & -1 & 4 \\
3 & 0 & -1
\end{array}\right]
$$

Thus, if $\mathbf{v}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}$, then $[\mathbf{v}]_{\alpha}=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and

$$
\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=[\mathbf{v}]_{\beta}=[I]_{\alpha}^{\beta}[\mathbf{v}]_{\alpha}=\left[\begin{array}{ccc}
5 & 1 & -2 \\
-10 & -1 & 4 \\
3 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
5 a_{1}+a_{2}-2 a_{3} \\
-10 a_{1}-a_{2}+4 a_{3} \\
3 a_{1}-a_{3}
\end{array}\right] .
$$

So

$$
\begin{aligned}
b_{1} & =5 a_{1}+a_{2}-2 a_{3} \\
b_{2} & =-10 a_{1}-a_{2}+4 a_{3} \\
b_{3} & =3 a_{1}-a_{3} .
\end{aligned}
$$

6. [25 points] Let V be a vector space and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq V$ be linearly independent. Prove that for any $\mathbf{v} \in V$ such that $\mathbf{v} \notin \operatorname{Span}(S)$ the set $S \cup\{\mathbf{v}\}$ is also linearly independent.

Solution: Suppose $a, a_{1}, \ldots, a_{k} \in \mathbb{R}$ such that

$$
\begin{equation*}
a \mathbf{v}+a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}=\mathbf{0} . \tag{1}
\end{equation*}
$$

We aim to show that $a=a_{1}=\cdots=a_{k}=0$.
Case 1: $a=0$.
In this case, Equation (1) becomes

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}=\mathbf{0}
$$

and since S is linearly independent we have that $a_{1}=\cdots=a_{k}=0$ completing this case. Case 2: $a \neq 0$.
In this case we can rewrite Equation (1) to be

$$
\begin{equation*}
\left(\frac{-a_{1}}{a}\right) \mathbf{v}_{1}+\left(\frac{-a_{2}}{a}\right) \mathbf{v}_{2}+\cdots+\left(\frac{-a_{k}}{a}\right) \mathbf{v}_{k}=\mathbf{v} \tag{2}
\end{equation*}
$$

Equation 2 gives us that $\mathbf{v} \in \operatorname{Span}(S)$ contradicting our assumption that $\mathbf{v} \notin \operatorname{Span}(S)$ and completing this case.
7. Let $P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}$ be the vector space of polynomials of degree at most 2 and let $T: \mathbb{R}^{3} \rightarrow P_{2}$ be the linear map given by

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=1+x+x^{2}, \quad T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=x, \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=1+x^{2}
$$

(a) $[10$ points $]$ Find $T\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)$.
(b) [5 points] State the definition of an isomorphism between vector spaces.
(c) [10 points] Is T an isomorphism? Justify your answer.

Solution:

(a) Notice that

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Therefore,

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right) & =T\left(-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \\
& =-T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)+3 T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \\
& =-\left(1+x+x^{2}\right)-(x)+3\left(1+x^{2}\right)=2-2 x+2 x^{2} .
\end{aligned}
$$

(b) A function $S: V \rightarrow W$ between two vector spaces is an isomorphism if it is a linear map that is both one-to-one and onto.
(c) The map above is not an isomorphism since it is not one-to-one (or onto). Notice that

$$
\begin{aligned}
T\left(\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]\right) & =T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \\
& =\left(1+x+x^{2}\right)-\left(1+x^{2}\right)=x=T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right),
\end{aligned}
$$

and $\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right] \neq\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
8. Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.
(a) [10 points] Find all the eigenvalues of A.
(b) [15 points] If possible, find a basis for \mathbb{R}^{3} consisting only of eigenvectors of A. If this is not possible, explain why.

Solution:

(a) We start by computing the characteristic polynomial of A.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left[(1-\lambda)^{2}-1\right]=-\lambda(1-\lambda)(2-\lambda) .
\end{aligned}
$$

From this we see that the eigenvalues are $\lambda=0,1,2$ since these are the roots of the characteristic polynomial.
(b) Here we compute a basis for each eigenspace by solving the homogenous system of equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$ for each eigenvalue λ. Doing this yields

$$
E_{0}=\operatorname{Span}\left(\left\{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}\right), E_{1}=\operatorname{Span}\left(\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}\right), E_{2}=\operatorname{Span}\left(\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}\right) .
$$

Therefore,

$$
\alpha=\left\{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

is a basis for \mathbb{R}^{3} that is made of eigenvectors of A.

