

February 2019
Number:
Read This First:
• This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or oFebruaryher aids are permitted. Cell phones are to be silenced and out of sight.
ullet Write your number (not your name) in the above space.
• For any given problem, you may use the back of the <i>previous</i> page for scratch work. Put your final answers in the spaces provided.
• Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
• In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
\bullet The Multivariable Calculus and Linear Algebra Exam consists of Questions 1–8 that total to 200 points.
For Department Use Only:
Grader #1:
Grader #2.

1. A fly is buzzing around a room in which the temperature is given in degrees Celsius by

$$T(x, y, z) = x^2 + y^2 + 3z^2 + 17.$$

Suppose that the fly is currently at the point (1, 2, -1).

- (a) [10 points] The fly wants to warm up. In what direction should it fly? Find a vector pointing in the direction in which the temperature increases most rapidly from the fly's current position.
- (b) [15 points] Suppose the fly moves from the point (1, 2, -1) in the direction of the vector $\langle 4, 0, 3 \rangle$. Find the directional derivative of the temperature in that direction. Will the fly feel warmer or colder?
- 2. [25 points] Let $f(x,y) = 2x^3 3x^2y 12x^2 3y^2$. Find all critical points of f, and classify each as a local maximum, local minimum, or saddle point.
- 3. [25 points] Find the volume of the region that lies both inside the sphere $x^2 + y^2 + z^2 = 6$ and above the paraboloid $z = x^2 + y^2$.
- 4. [25 points] Compute $\int_C x^2 y \, dx + xy^2 \, dy$ where C is the triangle with vertices (0,0), (1,0), and (1,1), traversed in the counterclockwise direction.
- 5. [25 points] Let V be a vector space and let $\alpha = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\beta = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ each be a basis for V. Suppose that

$$\mathbf{w}_1 = \mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3$$

 $\mathbf{w}_2 = \mathbf{v}_1 + \mathbf{v}_2 + 3\mathbf{v}_3$
 $\mathbf{w}_3 = 2\mathbf{v}_1 + 5\mathbf{v}_3$.

Let $\mathbf{v} \in V$ such that $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3$ for some $a_1, a_2, a_3 \in \mathbb{R}$. Find $b_1, b_2, b_3 \in \mathbb{R}$ (in terms of a_1, a_2 , and a_3) such that $\mathbf{v} = b_1\mathbf{w}_1 + b_2\mathbf{w}_2 + b_3\mathbf{w}_3$.

- 6. [25 points] Let V be a vector space and let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq V$ be linearly independent. Prove that for any $\mathbf{v} \in V$ such that $\mathbf{v} \notin \mathrm{Span}(S)$ the set $S \cup \{\mathbf{v}\}$ is also linearly independent.
- 7. Let $P_2 = \{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}$ be the vector space of polynomials of degree at most 2 and let $T : \mathbb{R}^3 \to P_2$ be the linear map given by

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = 1 + x + x^2, \quad T\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = x, \text{ and } T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = 1 + x^2.$$

- (a) [10 points] Find $T \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \end{pmatrix}$.
- (b) [5 points] State the definition of an isomorphism between vector spaces.
- (c) [10 points] Is T an isomorphism? Justify your answer.

8. Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
.

- (a) [10 points] Find all the eigenvalues of A.
- (b) [15 points] If possible, find a basis for \mathbb{R}^3 consisting only of eigenvectors of A. If this is not possible, explain why.