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1. A fly is buzzing around a room in which the temperature is given in degrees Celsius by
T(z,y,2) = 2> +y* + 32> + 17.
Suppose that the fly is currently at the point (1,2, —1).

(a) [10 points] The fly wants to warm up. In what direction should it fly? Find a
vector pointing in the direction in which the temperature increases most rapidly
from the fly’s current position.

(b) [15 points] Suppose the fly moves from the point (1,2, —1) in the direction of the
vector (4,0, 3). Find the directional derivative of the temperature in that direction.
Will the fly feel warmer or colder?

2. [25 points] Let f(x,y) = 22° — 322y — 1222 — 3y®. Find all critical points of f, and
classify each as a local maximum, local minimum, or saddle point.

3. [25 points] Find the volume of the region that lies both inside the sphere 2% +y*+2? = 6
and above the paraboloid z = 22 + 32

4. [25 points| Compute /:czy dx + xy* dy where C is the triangle with vertices (0,0),

c
(1,0), and (1, 1), traversed in the counterclockwise direction.

5. [25 points| Let V' be a vector space and let v = {vy, vy, v3} and § = {wy, wy, w3} each
be a basis for V. Suppose that
Wi = Vi + 2vay + 3vg
Wy =V] + V2+3V3
W3 = 2V1 + 5V3.

Let v € V such that v = a1vy + asva + agvs for some aq, as, a3 € R. Find by, by, b3 € R
(in terms of aj, ag, and ag) such that v = bywy + bows + byws.

6. [25 points] Let V' be a vector space and let S = {v1,va,..., v} C V be linearly inde-
pendent. Prove that for any v € V such that v ¢ Span(S) the set SU{v} is also linearly
independent.

7. Let P, = {a+bx+cx? | a,b,c € R} be the vector space of polynomials of degree at most
2 and let T : R?® — P, be the linear map given by

1 1 1
T {0 =14+z+2% T|[]1 =z, and T | |1 =142
0 0 1
1
(a) [10 points|] Find T | |2
3

(b) [5 points] State the definition of an isomorphism between vector spaces.

(c) [10 points] Is 7" an isomorphism? Justify your answer.
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1
0f.
1

o = O

1
8 Let A= [0
1

(a) [10 points] Find all the eigenvalues of A.
(b) [15 points] If possible, find a basis for R?® consisting only of eigenvectors of A. If

this is not possible, explain why.
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