Amherst College Department of Mathematics and Statistics Solutions to Comprehensive Examination: Algebra January, 2020

1. (25 points) Let G, H be groups, and let $\phi, \psi: G \to H$ be homomorphisms. Define

$$E = \{ x \in G \, | \, \phi(x) = \psi(x) \}.$$

Prove that E is a subgroup of G.

Proof. (Nonempty): Let e_G and e_H be the identity elements of G and H. By properties of homomorphisms, we have $\phi(e_G) = e_H = \psi(e_G)$. Thus, $e_G \in E$, and hence $E \neq \emptyset$. (Closure): Given $x, y \in E$, we have

$$\phi(xy) = \phi(x)\phi(y) = \psi(x)\psi(y) = \psi(xy),$$

where the first and third equalities are by definition of homomorphism, and the second is because $x, y \in E$. Thus, we have $xy \in E$.

(Inverses): Given $x \in E$, we have

$$\phi(x^{-1}) = \phi(x)^{-1} = \psi(x)^{-1} = \psi(x^{-1}),$$

where the first and third equalities are by properties of homomorphisms, and the second is because $x \in E$. Thus, we have $x^{-1} \in E$.

QED

Therefore, E is a subgroup of G.

2. (25 points) Let G be an abelian group, and define

 $T = \{ g \in G \, | \, g \text{ has finite order} \}.$

It is a fact, which you may assume, that T is a normal subgroup of G. Prove that the only element of the quotient group G/T that has finite order is the identity element.

Proof. Given $Tg \in G/T$ of finite order, we must show that Tg = Te.

By assumption, there exists $n \ge 1$ such that $(Tg)^n = Te$. Thus, $T(g^n) = Te$, so by the coset criterion, $g^n e^{-1} \in T$, i.e., $g^n \in T$.

Since $g^n \in T$, there is some $m \ge 1$ such that $(g^n)^m \in T$. Therefore, $g^{nm} = e$. Since $nm \ge 1$, it follows that g has finite order, and hence $g \in T$. Thus, $ge^{-1} = T$, and hence Tg = Te, by the coset criterion. QED

3. (25 points) Consider the group S_9 of permutations of the set $\{1, 2, 3, \ldots, 9\}$. Let $\sigma, \tau \in S_9$ be the permutations

 $\sigma = (1, 2, 3, 4)(5, 6)$ and $\tau = (1, 6, 8)(2, 7, 3, 5, 4).$

- (a) (8 points) Write $\sigma \tau$ as a product of disjoint cycles.
- (b) (8 points) Compute the order of each of σ , τ , and $\sigma\tau$.
- (c) (9 points) Decide whether each of σ , τ , and $\sigma\tau$ is an even or odd permutation; don't forget to justify.

Answers. (a): $\sigma \tau = (1 \ 5)(2 \ 7 \ 4 \ 3 \ 6 \ 8)$

[Alternatively, if a student chooses to read the cycles as composing from left to right (which is highly nonstandard but internally consistent), the answer would be $(1\ 7\ 3\ 2\ 5\ 8)(4\ 6)$.]

(b): $o(\sigma) = \text{lcm}(4, 2) = 4$. $o(\tau) = \text{lcm}(3, 5) = 15$. $o(\sigma\tau) = \text{lcm}(2, 6) = 6$.

(c): σ is the product of a 4-cycle (odd) and 2-cycle (also odd), so σ is **even**. τ is the product of a 3-cycle (even) and a 5-cycle (also even), so τ is also **even**. $\sigma\tau$ is a product of σ (even) and τ (even), so it is **even**. [Alternatively, $\sigma\tau$ is the product of a 2-cycle (odd) and a 6-cycle (also odd), so $\sigma\tau$ is even.]

4. (25 points) Let R be a ring.

- (a) (6 points) Define what it means for a subset $I \subseteq R$ to be an ideal of R. If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.
- (b) (19 points) Suppose R is commutative, and let $S \subseteq R$ be a subset of R. Define the *annihilator* of S in R to be

 $\operatorname{Ann}(S) = \{ x \in R : xs = 0 \text{ for every } s \in S \}.$

Prove that Ann(S) is an ideal of R.

Answer/Proof. (a): To say $I \subseteq R$ is an ideal of R means:

- *I* is nonempty,
- for all $x, y \in I$, we have $x y \in I$,
- for all $x \in I$ and $a \in R$, we have $ax, xa \in I$.
- (b): **Proof.** Let I = Ann(S).

(Nonempty): We claim $0 \in I$. Indeed, given $s \in S$, we have 0s = 0, so $0 \in I$.

(Closed under -): Given $x, y \in I$, and given $s \in S$, we have

$$(x - y)s = xs - ys = 0 - 0 = 0,$$

so $x - y \in I$. (Ideal property): Given $x \in I$ and $a \in R$, and given $s \in S$, we have

$$(ax)s = a(xs) = a(0) = 0$$
, and $(xa)s = (ax)s = 0$.

Thus, $ax, xa \in I$.

QED (b)