Amherst College Department of Mathematics and Statistics
Solutions to Comprehensive Examination: Algebra
January, 2020

1. (25 points) Let G, H be groups, and let $\phi, \psi: G \rightarrow H$ be homomorphisms. Define

$$
E=\{x \in G \mid \phi(x)=\psi(x)\}
$$

Prove that E is a subgroup of G.
Proof. (Nonempty): Let e_{G} and e_{H} be the identity elements of G and H. By properties of homomorphisms, we have $\phi\left(e_{G}\right)=e_{H}=\psi\left(e_{G}\right)$. Thus, $e_{G} \in E$, and hence $E \neq \varnothing$.
(Closure): Given $x, y \in E$, we have

$$
\phi(x y)=\phi(x) \phi(y)=\psi(x) \psi(y)=\psi(x y)
$$

where the first and third equalities are by definition of homomorphism, and the second is because $x, y \in E$. Thus, we have $x y \in E$.
(Inverses): Given $x \in E$, we have

$$
\phi\left(x^{-1}\right)=\phi(x)^{-1}=\psi(x)^{-1}=\psi\left(x^{-1}\right),
$$

where the first and third equalities are by properties of homomorphisms, and the second is because $x \in E$. Thus, we have $x^{-1} \in E$.
Therefore, E is a subgroup of G.
2. (25 points) Let G be an abelian group, and define

$$
T=\{g \in G \mid g \text { has finite order }\} .
$$

It is a fact, which you may assume, that T is a normal subgroup of G. Prove that the only element of the quotient group G / T that has finite order is the identity element.

Proof. Given $T g \in G / T$ of finite order, we must show that $T g=T e$.
By assumption, there exists $n \geq 1$ such that $(T g)^{n}=T e$. Thus, $T\left(g^{n}\right)=T e$, so by the coset criterion, $g^{n} e^{-1} \in T$, i.e., $g^{n} \in T$.
Since $g^{n} \in T$, there is some $m \geq 1$ such that $\left(g^{n}\right)^{m} \in T$. Therefore, $g^{n m}=e$. Since $n m \geq 1$, it follows that g has finite order, and hence $g \in T$. Thus, $g e^{-1}=T$, and hence $T g=T e$, by the coset criterion.
3. (25 points) Consider the group S_{9} of permutations of the set $\{1,2,3, \ldots, 9\}$. Let $\sigma, \tau \in S_{9}$ be the permutations

$$
\sigma=(1,2,3,4)(5,6) \quad \text { and } \quad \tau=(1,6,8)(2,7,3,5,4)
$$

(a) (8 points) Write $\sigma \tau$ as a product of disjoint cycles.
(b) (8 points) Compute the order of each of σ, τ, and $\sigma \tau$.
(c) (9 points) Decide whether each of σ, τ, and $\sigma \tau$ is an even or odd permutation; don't forget to justify.

Answers. (a): $\sigma \tau=(15)(274368)$
[Alternatively, if a student chooses to read the cycles as composing from left to right (which is highly nonstandard but internally consistent), the answer would be (173258)(46).]
$(\mathrm{b}): o(\sigma)=\operatorname{lcm}(4,2)=4$.
$o(\tau)=\operatorname{lcm}(3,5)=15$.
$o(\sigma \tau)=\operatorname{lcm}(2,6)=6$.
(c): σ is the product of a 4-cycle (odd) and 2-cycle (also odd), so σ is even.
τ is the product of a 3 -cycle (even) and a 5 -cycle (also even), so τ is also even. $\sigma \tau$ is a product of σ (even) and τ (even), so it is even.
[Alternatively, $\sigma \tau$ is the product of a 2 -cycle (odd) and a 6 -cycle (also odd), so $\sigma \tau$ is even.]
4. (25 points) Let R be a ring.
(a) (6 points) Define what it means for a subset $I \subseteq R$ to be an ideal of R.

If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.
(b) (19 points) Suppose R is commutative, and let $S \subseteq R$ be a subset of R. Define the annihilator of S in R to be

$$
\operatorname{Ann}(S)=\{x \in R: x s=0 \text { for every } s \in S\}
$$

Prove that $\operatorname{Ann}(S)$ is an ideal of R.
Answer/Proof. (a): To say $I \subseteq R$ is an ideal of R means:

- I is nonempty,
- for all $x, y \in I$, we have $x-y \in I$,
- for all $x \in I$ and $a \in R$, we have $a x, x a \in I$.
(b): Proof. Let $I=\operatorname{Ann}(S)$.
(Nonempty): We claim $0 \in I$. Indeed, given $s \in S$, we have $0 s=0$, so $0 \in I$.
(Closed under -): Given $x, y \in I$, and given $s \in S$, we have

$$
(x-y) s=x s-y s=0-0=0
$$

so $x-y \in I$.
(Ideal property): Given $x \in I$ and $a \in R$, and given $s \in S$, we have

$$
(a x) s=a(x s)=a(0)=0, \quad \text { and } \quad(x a) s=(a x) s=0 .
$$

Thus, $a x, x a \in I$.
QED (b)

