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1. (25 points) Let G,H be groups, and let φ, ψ : G→ H be homomorphisms. Define

E = {x ∈ G |φ(x) = ψ(x)}.

Prove that E is a subgroup of G.

Proof. (Nonempty): Let eG and eH be the identity elements of G and H. By properties of
homomorphisms, we have φ(eG) = eH = ψ(eG). Thus, eG ∈ E, and hence E 6= ∅.

(Closure): Given x, y ∈ E, we have

φ(xy) = φ(x)φ(y) = ψ(x)ψ(y) = ψ(xy),

where the first and third equalities are by definition of homomorphism, and the second is
because x, y ∈ E. Thus, we have xy ∈ E.

(Inverses): Given x ∈ E, we have

φ(x−1) = φ(x)−1 = ψ(x)−1 = ψ(x−1),

where the first and third equalities are by properties of homomorphisms, and the second is
because x ∈ E. Thus, we have x−1 ∈ E.

Therefore, E is a subgroup of G. QED

2. (25 points) Let G be an abelian group, and define

T = {g ∈ G | g has finite order}.

It is a fact, which you may assume, that T is a normal subgroup of G. Prove that the only
element of the quotient group G/T that has finite order is the identity element.

Proof. Given Tg ∈ G/T of finite order, we must show that Tg = Te.

By assumption, there exists n ≥ 1 such that (Tg)n = Te. Thus, T (gn) = Te, so by the coset
criterion, gne−1 ∈ T , i.e., gn ∈ T .
Since gn ∈ T , there is some m ≥ 1 such that (gn)m ∈ T . Therefore, gnm = e. Since nm ≥ 1,
it follows that g has finite order, and hence g ∈ T . Thus, ge−1 = T , and hence Tg = Te, by
the coset criterion. QED



3. (25 points) Consider the group S9 of permutations of the set {1, 2, 3, . . . , 9}. Let σ, τ ∈ S9

be the permutations

σ = (1, 2, 3, 4)(5, 6) and τ = (1, 6, 8)(2, 7, 3, 5, 4).

(a) (8 points) Write στ as a product of disjoint cycles.

(b) (8 points) Compute the order of each of σ, τ , and στ .

(c) (9 points) Decide whether each of σ, τ , and στ is an even or odd permutation;
don’t forget to justify.

Answers. (a): στ = (1 5)(2 7 4 3 6 8)
[Alternatively, if a student chooses to read the cycles as composing from left to right (which
is highly nonstandard but internally consistent), the answer would be (1 7 3 2 5 8)(4 6).]

(b): o(σ) = lcm(4, 2) = 4.
o(τ) = lcm(3, 5) = 15.
o(στ) = lcm(2, 6) = 6.

(c): σ is the product of a 4-cycle (odd) and 2-cycle (also odd), so σ is even.
τ is the product of a 3-cycle (even) and a 5-cycle (also even), so τ is also even.
στ is a product of σ (even) and τ (even), so it is even.
[Alternatively, στ is the product of a 2-cycle (odd) and a 6-cycle (also odd), so στ is even.]

4. (25 points) Let R be a ring.

(a) (6 points) Define what it means for a subset I ⊆ R to be an ideal of R.
If you use any other technical terms like “closed,” “subring,” “group,” “subgroup,”
etc., you must fully define those terms as well.

(b) (19 points) Suppose R is commutative, and let S ⊆ R be a subset of R. Define the
annihilator of S in R to be

Ann(S) = {x ∈ R : xs = 0 for every s ∈ S}.

Prove that Ann(S) is an ideal of R.

Answer/Proof. (a): To say I ⊆ R is an ideal of R means:

• I is nonempty,

• for all x, y ∈ I, we have x− y ∈ I,

• for all x ∈ I and a ∈ R, we have ax, xa ∈ I.
(b): Proof. Let I = Ann(S).
(Nonempty): We claim 0 ∈ I. Indeed, given s ∈ S, we have 0s = 0, so 0 ∈ I.

(Closed under −): Given x, y ∈ I, and given s ∈ S, we have

(x− y)s = xs− ys = 0− 0 = 0,
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so x− y ∈ I.

(Ideal property): Given x ∈ I and a ∈ R, and given s ∈ S, we have

(ax)s = a(xs) = a(0) = 0, and (xa)s = (ax)s = 0.

Thus, ax, xa ∈ I. QED (b)
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