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Algebra January 2020

1. [25 points] Let G,H be groups, and let φ, ψ : G→ H be homomorphisms. Define

E = {x ∈ G |φ(x) = ψ(x)}.

Prove that E is a subgroup of G.

2. [25 points] Let G be an abelian group, and define

T = {g ∈ G | g has finite order}.

It is a fact, which you may assume, that T is a normal subgroup of G. Prove that the
only element of the quotient group G/T that has finite order is the identity element.

3. [25 points] Consider the group S9 of permutations of the set {1, 2, 3, . . . , 9}. Let σ, τ ∈ S9

be the permutations

σ = (1, 2, 3, 4)(5, 6) and τ = (1, 6, 8)(2, 7, 3, 5, 4).

(a) [8 points] Write στ as a product of disjoint cycles.

(b) [8 points] Compute the order of each of σ, τ , and στ .

(c) [9 points] Decide whether each of σ, τ , and στ is an even or odd permutation; don’t
forget to justify.

4. [25 points] Let R be a ring.

(a) [6 points] Define what it means for a subset I ⊆ R to be an ideal of R.

If you use any other technical terms like “closed,” “subring,” “group,” “subgroup,” etc.,
you must fully define those terms as well.

(b) [19 points] Suppose R is commutative, and let S ⊆ R be a subset of R. Define the
annihilator of S in R to be

Ann(S) = {x ∈ R : xs = 0 for every s ∈ S}.

Prove that Ann(S) is an ideal of R.
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