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Algebra January 2020

1. [25 points] Let G, H be groups, and let ¢, : G — H be homomorphisms. Define

E={reGlo(x)=v(x)}.
Prove that £ is a subgroup of G.

2. [25 points|] Let G be an abelian group, and define
T = {g € G| g has finite order}.

It is a fact, which you may assume, that 7" is a normal subgroup of G. Prove that the
only element of the quotient group G/T that has finite order is the identity element.

3. [25 points| Consider the group Sy of permutations of the set {1,2,3,...,9}. Let 0,7 € Sy
be the permutations

o=(1,2,3,4)(5,6) and 7= (1,6,8)(2,7,3,5,4).

(a) [8 points] Write o7 as a product of disjoint cycles.
(b) [8 points| Compute the order of each of o, 7, and o7.
(¢) [9 points| Decide whether each of o, 7, and o7 is an even or odd permutation; don’t
forget to justify.
4. [25 points| Let R be a ring.
(a) [6 points] Define what it means for a subset I C R to be an ideal of R.
If you use any other technical terms like “closed,” “subring,” “group,” “subgroup,” etc.,
you must fully define those terms as well.

(b) [19 points] Suppose R is commutative, and let S C R be a subset of R. Define the
annihilator of S in R to be

Ann(S) ={x € R: xs =0 for every s € S}.

Prove that Ann(S) is an ideal of R.
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