Amherst College
 Department of Mathematics and Statistics

Comprehensive Examination
 \triangleleft AnALYSIS \triangleright
 Jandary 2020

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1-4 that total to 100 points.
- Throughout this exam \mathbf{R} will denote the real number system.

For Department Use Only:
Grader \#1: \qquad
Grader \#2: \qquad

1. (a) [5 points] State the Axiom of Completeness for \mathbf{R}.

Solution: Every nonempty subset of \mathbf{R} that is bounded from above (in \mathbf{R}) has a least upper bound that belongs to \mathbf{R}.
(b) [20 points] Let $A \subseteq \mathbf{R}$ be a nonempty set which is bounded from below and define

$$
B:=\{-a: a \in A\} .
$$

Prove that $\sup (B) \in \mathbf{R}$ exists and $\inf (A)=-\sup (B)$.
Proof. We begin by showing that $\sup (B) \in \mathbf{R}$. Note that $B \subseteq \mathbf{R}$ is nonempty since A is nonempty. Additionally, given that A is bounded from below we can find $\ell \in \mathbf{R}$ such that $\ell \leq a$ for all $a \in A$. Then $-\ell \in \mathbf{R}$ satisfies $-\ell \geq-a$ for all $a \in A$ which implies B is bounded from above by $-\ell$. Thus, $\sup (B) \in \mathbf{R}$ by the Axiom of Completeness.

Moving on, to show that $\inf (A)=-\sup (B)$, we first need to show that $-\sup (B)$ is a lower bound for A. Since $\sup (B) \geq-a$ for all $a \in A$ we have $-\sup (B) \leq a$ for all $a \in A$. Hence, $-\sup (B)$ is a lower bound for A, as wanted. Next, suppose that $\alpha \in \mathbf{R}$ is any lower bound for A, i.e., suppose $\alpha \leq a$ for all $a \in A$. Then, $-\alpha \geq-a$ for all $a \in A$ which implies that $-\alpha \in \mathbf{R}$ is an upper bound for B. It follows that $\alpha \geq-\sup (B)$. Hence, $-\sup (B)$ is the greatest lower bound for A, i.e., $\inf (A)=-\sup (B)$.
2. (a) [5 points] State the Mean Value Theorem.

Solution: Let $a, b \in \mathbb{R}$ with $a<b$. Suppose that $f:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists at least one point $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
(b) [20 points] Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at every point in \mathbf{R}. Use part (a) to prove that if $f^{\prime}(x)=0$ for all $x \in \mathbf{R}$ then $f(x)=k$ for some constant $k \in \mathbf{R}$.

Solution: To show that f is a constant function, we will show that $f(a)=f(b)$ for all $a, b \in \mathbf{R}, a<b$. Fix $a, b \in \mathbf{R}, a<b$. Since f is differentiable at every point in \mathbf{R} it is also continuous at every point in \mathbf{R}. It follows by definition that f is continuous on $[a, b]$ and differentiable on (a, b). In light of the Mean Value Theorem, we can find $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$. By assumption, we have $f^{\prime}(c)=0$. Hence, $f(b)-f(a)=f^{\prime}(c)(b-a)=0$ which gives $f(a)=f(b)$, as wanted.
3. For each $n \in \mathbb{N}$, let $f_{n}:(0, \infty) \rightarrow \mathbf{R}$ be given by $f_{n}(x):=\frac{1}{n^{2} x}$ for all $x \in(0, \infty)$.
(a) [10 points] Prove that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges pointwise on $(0, \infty)$. Be sure to define the limit function $f:(0, \infty) \rightarrow \mathbf{R}$.

Proof. Define $f:(0, \infty) \rightarrow \mathbf{R}$ by setting $f(x):=0$ for all $x \in(0, \infty)$. Fix $a \in(0, \infty)$. Then by the Algebraic Limit Theorem for sequences we have

$$
\lim _{n \rightarrow \infty} f_{n}(a)=\lim _{n \rightarrow \infty} \frac{1}{n^{2} a}=\frac{1}{a}\left(\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\right)=0=f(a) .
$$

Since $a \in(0, \infty)$ was chosen arbitrarily, we have that $\left(f_{n}\right)_{n=1}^{\infty}$ converges pointwise on $(0, \infty)$ to f.
(b) [15 points] Prove that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly on $[c, \infty)$ for every $c \in(0, \infty)$.

Proof. Fix $c \in(0, \infty)$, along with an arbitrary $\varepsilon \in(0, \infty)$. By the Archimedean Property, there exists $N \in \mathbf{N}$ with $N>\frac{1}{\sqrt{c \varepsilon}}$. Then if $n \in \mathbf{N}$ satisfies $n \geq N$ and $x \in[c, \infty)$, then

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{1}{n^{2} x}-0\right|=\frac{1}{n^{2} x} \leq \frac{1}{N^{2} c}<\varepsilon
$$

It follows by definition that $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly on $[c, \infty)$ to f.
4. (a) [5 points] Finish the following definition: A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of real numbers is said to be Cauchy if...

Solution: for every $\varepsilon \in(0, \infty)$ there exists $N \in \mathbf{N}$ such that for all $n, m \in \mathbf{N}$ with $n, m \geq N$, one has $\left|a_{n}-a_{m}\right|<\varepsilon$.
(b) [5 points] Finish the following definition: A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to uniformly continuous on a nonempty set $E \subseteq \mathbf{R}$ if...

Solution: for every $\varepsilon \in(0, \infty)$ there exists $\delta \in(0, \infty)$ such that for all $x, y \in E$ with $|x-y|<\delta$, one has $|f(x)-f(y)|<\varepsilon$.
(c) [15 points] Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is a uniformly continuous on a nonempty set $E \subseteq \mathbf{R}$. Prove that if $\left(a_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence of points in E then the sequence $\left(f\left(a_{n}\right)\right)_{n=1}^{\infty}$ is Cauchy.

Solution: Suppose $\left(a_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence of points in E. Fix $\varepsilon \in(0, \infty)$. Since f is uniformly continuous on E we have that there exists $\delta \in(0, \infty)$ such that for all $x, y \in E$ with $|x-y|<\delta$ one has $|f(x)-f(y)|<\varepsilon$. Relying on the assumption that $\left(a_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence and the fact that $\delta \in(0, \infty)$, we are guaranteed a number $N \in \mathbf{N}$ such that for all $n, m \in \mathbf{N}$ with $n, m \geq N$, one has $\left|a_{n}-a_{m}\right|<\delta$. Combining these observations, we can conclude that if $n, m \in \mathbf{N}$ with $n, m \geq N$ then $\left|f\left(a_{n}\right)-f\left(a_{m}\right)\right|<\varepsilon$.

