

Amherst College Department of Mathematics and Statistics

Comprehensive Examination \triangleleft Analysis \triangleright

JANUARY 2020

NUMBER:

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (*not* your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1–4 that total to 100 points.
- Throughout this exam \mathbf{R} will denote the real number system.

For Department Use Only:

Grader #1: _____

Grader #2: _____

1. (a) [5 points] State the Axiom of Completeness for **R**.

Solution: Every nonempty subset of \mathbf{R} that is bounded from above (in \mathbf{R}) has a least upper bound that belongs to \mathbf{R} .

(b) [20 points] Let $A \subseteq \mathbf{R}$ be a nonempty set which is bounded from below and define

$$B := \{-a : a \in A\}.$$

Prove that $\sup(B) \in \mathbf{R}$ exists and $\inf(A) = -\sup(B)$.

Proof. We begin by showing that $\sup(B) \in \mathbf{R}$. Note that $B \subseteq \mathbf{R}$ is nonempty since A is nonempty. Additionally, given that A is bounded from below we can find $\ell \in \mathbf{R}$ such that $\ell \leq a$ for all $a \in A$. Then $-\ell \in \mathbf{R}$ satisfies $-\ell \geq -a$ for all $a \in A$ which implies B is bounded from above by $-\ell$. Thus, $\sup(B) \in \mathbf{R}$ by the Axiom of Completeness.

Moving on, to show that $\inf(A) = -\sup(B)$, we first need to show that $-\sup(B)$ is a lower bound for A. Since $\sup(B) \ge -a$ for all $a \in A$ we have $-\sup(B) \le a$ for all $a \in A$. Hence, $-\sup(B)$ is a lower bound for A, as wanted. Next, suppose that $\alpha \in \mathbf{R}$ is any lower bound for A, i.e., suppose $\alpha \le a$ for all $a \in A$. Then, $-\alpha \ge -a$ for all $a \in A$ which implies that $-\alpha \in \mathbf{R}$ is an upper bound for B. It follows that $\alpha \ge -\sup(B)$. Hence, $-\sup(B)$ is the greatest lower bound for A, i.e., $\inf(A) = -\sup(B)$.

2. (a) [5 points] State the Mean Value Theorem.

Solution: Let $a, b \in \mathbb{R}$ with a < b. Suppose that $f: [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b). Then there exists at least one point $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a).

(b) [20 points] Suppose $f: \mathbf{R} \to \mathbf{R}$ is differentiable at every point in \mathbf{R} . Use part (a) to prove that if f'(x) = 0 for all $x \in \mathbf{R}$ then f(x) = k for some constant $k \in \mathbf{R}$.

Solution: To show that f is a constant function, we will show that f(a) = f(b) for all $a, b \in \mathbf{R}$, a < b. Fix $a, b \in \mathbf{R}$, a < b. Since f is differentiable at every point in \mathbf{R} it is also continuous at every point in \mathbf{R} . It follows by definition that f is continuous on [a, b] and differentiable on (a, b). In light of the Mean Value Theorem, we can find $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a). By assumption, we have f'(c) = 0. Hence, f(b) - f(a) = f'(c)(b - a) = 0 which gives f(a) = f(b), as wanted.

- 3. For each $n \in \mathbb{N}$, let $f_n: (0, \infty) \to \mathbf{R}$ be given by $f_n(x) := \frac{1}{n^2 x}$ for all $x \in (0, \infty)$.
 - (a) [10 points] Prove that the sequence $(f_n)_{n=1}^{\infty}$ converges pointwise on $(0, \infty)$. Be sure to define the limit function $f: (0, \infty) \to \mathbf{R}$.

Proof. Define $f: (0, \infty) \to \mathbf{R}$ by setting f(x) := 0 for all $x \in (0, \infty)$. Fix $a \in (0, \infty)$. Then by the Algebraic Limit Theorem for sequences we have

$$\lim_{n \to \infty} f_n(a) = \lim_{n \to \infty} \frac{1}{n^2 a} = \frac{1}{a} \left(\lim_{n \to \infty} \frac{1}{n^2} \right) = 0 = f(a).$$

Since $a \in (0, \infty)$ was chosen arbitrarily, we have that $(f_n)_{n=1}^{\infty}$ converges pointwise on $(0, \infty)$ to f.

(b) [15 points] Prove that the sequence $(f_n)_{n=1}^{\infty}$ converges uniformly on $[c, \infty)$ for every $c \in (0, \infty)$.

Proof. Fix $c \in (0, \infty)$, along with an arbitrary $\varepsilon \in (0, \infty)$. By the Archimedean Property, there exists $N \in \mathbf{N}$ with $N > \frac{1}{\sqrt{c\varepsilon}}$. Then if $n \in \mathbf{N}$ satisfies $n \ge N$ and $x \in [c, \infty)$, then

$$|f_n(x) - f(x)| = \left|\frac{1}{n^2x} - 0\right| = \frac{1}{n^2x} \le \frac{1}{N^2c} < \varepsilon.$$

It follows by definition that $(f_n)_{n=1}^{\infty}$ converges uniformly on $[c, \infty)$ to f.

4. (a) [5 points] Finish the following definition: A sequence $(a_n)_{n=1}^{\infty}$ of real numbers is said to be **Cauchy** if...

Solution: for every $\varepsilon \in (0, \infty)$ there exists $N \in \mathbf{N}$ such that for all $n, m \in \mathbf{N}$ with $n, m \geq N$, one has $|a_n - a_m| < \varepsilon$.

(b) [5 points] Finish the following definition: A function $f: \mathbf{R} \to \mathbf{R}$ is said to uniformly continuous on a nonempty set $E \subseteq \mathbf{R}$ if...

Solution: for every $\varepsilon \in (0, \infty)$ there exists $\delta \in (0, \infty)$ such that for all $x, y \in E$ with $|x - y| < \delta$, one has $|f(x) - f(y)| < \varepsilon$.

(c) [15 points] Suppose that $f: \mathbf{R} \to \mathbf{R}$ is a uniformly continuous on a nonempty set $E \subseteq \mathbf{R}$. Prove that if $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence of points in E then the sequence $(f(a_n))_{n=1}^{\infty}$ is Cauchy.

Solution: Suppose $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence of points in E. Fix $\varepsilon \in (0, \infty)$. Since f is uniformly continuous on E we have that there exists $\delta \in (0, \infty)$ such that for all $x, y \in E$ with $|x - y| < \delta$ one has $|f(x) - f(y)| < \varepsilon$. Relying on the assumption that $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence and the fact that $\delta \in (0, \infty)$, we are guaranteed a number $N \in \mathbf{N}$ such that for all $n, m \in \mathbf{N}$ with $n, m \geq N$, one has $|a_n - a_m| < \delta$. Combining these observations, we can conclude that if $n, m \in \mathbf{N}$ with $n, m \geq N$ then $|f(a_n) - f(a_m)| < \varepsilon$.