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Analysis January 2020

1. (a) [5 points] State the Axiom of Completeness for R.

Solution: Every nonempty subset of R that is bounded from above (in R) has a
least upper bound that belongs to R. Il

(b) [20 points] Let A C R be a nonempty set which is bounded from below and define
B:={—a:ac A}
Prove that sup(B) € R exists and inf(A) = — sup(B).

Proof. We begin by showing that sup(B) € R. Note that B C R is nonempty
since A is nonempty. Additionally, given that A is bounded from below we can find
¢ € R such that ¢ < a for all a € A. Then —¢ € R satisfies —¢ > —q for alla € A
which implies B is bounded from above by —¢. Thus, sup(B) € R by the Axiom
of Completeness.

Moving on, to show that inf(A) = — sup(B), we first need to show that — sup(B)
is a lower bound for A. Since sup(B) > —a for all a € A we have —sup(B) < a
for all a € A. Hence, —sup(B) is a lower bound for A, as wanted. Next, suppose
that a € R is any lower bound for A, i.e., suppose a < a for all a € A. Then,
—a > —a for all @ € A which implies that —a € R is an upper bound for B. It
follows that a > —sup(B). Hence, —sup(B) is the greatest lower bound for A, i.e.,
inf(A) = —sup(B). O

2. (a) [b points] State the Mean Value Theorem.

Solution: Let a,b € R with a < b. Suppose that f: [a,b] — R is continuous on
[a, b] and differentiable on (a, b). Then there exists at least one point ¢ € (a, b) such

that f(b) — f(a) = f'(c)(b—a). =

(b) [20 points] Suppose f: R — R is differentiable at every point in R. Use part (a)
to prove that if f/(x) =0 for all x € R then f(z) = k for some constant k € R.

Solution: To show that f is a constant function, we will show that f(a) = f(b) for
all a,b € R, a < b. Fix a,b € R, a < b. Since f is differentiable at every point
in R it is also continuous at every point in R. It follows by definition that f is
continuous on [a, b] and differentiable on (a, b). In light of the Mean Value Theorem,
we can find ¢ € (a,b) such that f(b) — f(a) = f'(c)(b—a). By assumption, we have
f'(¢) = 0. Hence, f(b) — f(a) = f'(¢)(b —a) = 0 which gives f(a) = f(b), as
wanted. O
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3. For each n € N, let f,: (0,00) = R be given by f,(z) := —— for all z € (0, 00).
n’x

(a) [10 points] Prove that the sequence (f,)2, converges pointwise on (0,00). Be sure
to define the limit function f: (0,00) — R.

Proof. Define f: (0,00) — R by setting f(z) := 0forallz € (0,00). Fixa € (0, 00).
Then by the Algebraic Limit Theorem for sequences we have

n—00 n—00 TL2CL a

Since a € (0,00) was chosen arbitrarily, we have that (f,,)32, converges pointwise
on (0,00) to f. O

(b) [15 points] Prove that the sequence (f,,)%°; converges uniformly on [¢, 00) for every
c € (0,00).

Proof. Fix ¢ € (0,00), along with an arbitrary ¢ € (0,00). By the Archimedean
Property, there exists N € N with N > % Then if n € N satisfies n > N and

\/T:—
x € [¢,00), then
1 1 1
o) = 1) = | =0 = < g <
It follows by definition that (f,)>°; converges uniformly on [c, 00) to f. O
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4. (a) [5 points| Finish the following definition: A sequence (a,)
to be Cauchy if...

of real numbers is said

Solution: for every ¢ € (0,00) there exists N € N such that for all n,m € N with
n,m > N, one has |a, — a,| < ¢. O

(b) [5 points] Finish the following definition: A function f: R — R is said to uni-
formly continuous on a nonempty set £ C R if...

Solution: for every e € (0, 00) there exists § € (0,00) such that for all z,y € E with
|z —y| < 0, one has | f(z) — f(y)| <e. O

(c) [15 points] Suppose that f: R — R is a uniformly continuous on a nonempty set
E C R. Prove that if (a,)$%, is a Cauchy sequence of points in F then the sequence

(f(an))zo:l is Cauchy.

Solution: Suppose (a,)>; is a Cauchy sequence of points in E. Fix ¢ € (0, 00).
Since f is uniformly continuous on E we have that there exists 6 € (0,00) such
that for all x,y € E with |z —y| < ¢ one has |f(z) — f(y)| < €. Relying on the
assumption that (a,)32, is a Cauchy sequence and the fact that § € (0, 00), we are
guaranteed a number N € N such that for all n,m € N with n,m > N, one has
lan, — a,,| < 6. Combining these observations, we can conclude that if n,m € N
with n,m > N then |f(a,) — f(an)| < e. O
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