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Analysis January 2020

1. (a) [5 points] State the Axiom of Completeness for R.

Solution: Every nonempty subset of R that is bounded from above (in R) has a
least upper bound that belongs to R.

(b) [20 points] Let A ⊆ R be a nonempty set which is bounded from below and define

B := {−a : a ∈ A}.

Prove that sup(B) ∈ R exists and inf(A) = − sup(B).

Proof. We begin by showing that sup(B) ∈ R. Note that B ⊆ R is nonempty
since A is nonempty. Additionally, given that A is bounded from below we can find
ℓ ∈ R such that ℓ ≤ a for all a ∈ A. Then −ℓ ∈ R satisfies −ℓ ≥ −a for all a ∈ A
which implies B is bounded from above by −ℓ. Thus, sup(B) ∈ R by the Axiom
of Completeness.

Moving on, to show that inf(A) = − sup(B), we first need to show that− sup(B)
is a lower bound for A. Since sup(B) ≥ −a for all a ∈ A we have − sup(B) ≤ a
for all a ∈ A. Hence, − sup(B) is a lower bound for A, as wanted. Next, suppose
that α ∈ R is any lower bound for A, i.e., suppose α ≤ a for all a ∈ A. Then,
−α ≥ −a for all a ∈ A which implies that −α ∈ R is an upper bound for B. It
follows that α ≥ − sup(B). Hence, − sup(B) is the greatest lower bound for A, i.e.,
inf(A) = − sup(B).

2. (a) [5 points] State the Mean Value Theorem.

Solution: Let a, b ∈ R with a < b. Suppose that f : [a, b] → R is continuous on
[a, b] and differentiable on (a, b). Then there exists at least one point c ∈ (a, b) such
that f(b)− f(a) = f ′(c)(b− a).

(b) [20 points] Suppose f : R → R is differentiable at every point in R. Use part (a)
to prove that if f ′(x) = 0 for all x ∈ R then f(x) = k for some constant k ∈ R.

Solution: To show that f is a constant function, we will show that f(a) = f(b) for
all a, b ∈ R, a < b. Fix a, b ∈ R, a < b. Since f is differentiable at every point
in R it is also continuous at every point in R. It follows by definition that f is
continuous on [a, b] and differentiable on (a, b). In light of the Mean Value Theorem,
we can find c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a). By assumption, we have
f ′(c) = 0. Hence, f(b) − f(a) = f ′(c)(b − a) = 0 which gives f(a) = f(b), as
wanted.
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3. For each n ∈ N, let fn : (0,∞) → R be given by fn(x) :=
1

n2x
for all x ∈ (0,∞).

(a) [10 points] Prove that the sequence (fn)
∞
n=1 converges pointwise on (0,∞). Be sure

to define the limit function f : (0,∞) → R.

Proof. Define f : (0,∞) → R by setting f(x) := 0 for all x ∈ (0,∞). Fix a ∈ (0,∞).
Then by the Algebraic Limit Theorem for sequences we have

lim
n→∞

fn(a) = lim
n→∞

1

n2a
=

1

a

(
lim
n→∞

1

n2

)
= 0 = f(a).

Since a ∈ (0,∞) was chosen arbitrarily, we have that (fn)
∞
n=1 converges pointwise

on (0,∞) to f .

(b) [15 points] Prove that the sequence (fn)
∞
n=1 converges uniformly on [c,∞) for every

c ∈ (0,∞).

Proof. Fix c ∈ (0,∞), along with an arbitrary ε ∈ (0,∞). By the Archimedean
Property, there exists N ∈ N with N > 1√

cε
. Then if n ∈ N satisfies n ≥ N and

x ∈ [c,∞), then

|fn(x)− f(x)| =
∣∣∣∣ 1

n2x
− 0

∣∣∣∣ = 1

n2x
≤ 1

N2c
< ε.

It follows by definition that (fn)
∞
n=1 converges uniformly on [c,∞) to f .

Page 2 of 3



Analysis January 2020

4. (a) [5 points] Finish the following definition: A sequence (an)
∞
n=1 of real numbers is said

to be Cauchy if...

Solution: for every ε ∈ (0,∞) there exists N ∈ N such that for all n,m ∈ N with
n,m ≥ N , one has |an − am| < ε.

(b) [5 points] Finish the following definition: A function f : R → R is said to uni-
formly continuous on a nonempty set E ⊆ R if...

Solution: for every ε ∈ (0,∞) there exists δ ∈ (0,∞) such that for all x, y ∈ E with
|x− y| < δ, one has |f(x)− f(y)| < ε.

(c) [15 points] Suppose that f : R → R is a uniformly continuous on a nonempty set
E ⊆ R. Prove that if (an)

∞
n=1 is a Cauchy sequence of points in E then the sequence(

f(an)
)∞
n=1

is Cauchy.

Solution: Suppose (an)
∞
n=1 is a Cauchy sequence of points in E. Fix ε ∈ (0,∞).

Since f is uniformly continuous on E we have that there exists δ ∈ (0,∞) such
that for all x, y ∈ E with |x − y| < δ one has |f(x) − f(y)| < ε. Relying on the
assumption that (an)

∞
n=1 is a Cauchy sequence and the fact that δ ∈ (0,∞), we are

guaranteed a number N ∈ N such that for all n,m ∈ N with n,m ≥ N , one has
|an − am| < δ. Combining these observations, we can conclude that if n,m ∈ N
with n,m ≥ N then |f(an)− f(am)| < ε.
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