

N T			
NU.	MBEI	₹:	

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1–4 that total to 100 points.
- \bullet Throughout this exam $\mathbf R$ will denote the real number system.

For Department Use Only:	
Grader #1:	
Grader #2:	

Analysis January 2020

- 1. (a) [5 points] State the Axiom of Completeness for R.
 - (b) [20 points] Let $A \subseteq \mathbf{R}$ be a nonempty set which is bounded from below and define

$$B := \{-a : a \in A\}.$$

Prove that $\sup(B) \in \mathbf{R}$ exists and $\inf(A) = -\sup(B)$.

- 2. (a) [5 points] State the Mean Value Theorem.
 - (b) [20 points] Suppose $f: \mathbf{R} \to \mathbf{R}$ is differentiable at every point in \mathbf{R} . Use part (a) to prove that if f'(x) = 0 for all $x \in \mathbf{R}$ then f(x) = k for some constant $k \in \mathbf{R}$.
- 3. For each $n \in \mathbb{N}$, let $f_n \colon (0, \infty) \to \mathbf{R}$ be given by $f_n(x) := \frac{1}{n^2 x}$ for all $x \in (0, \infty)$.
 - (a) [10 points] Prove that the sequence $(f_n)_{n=1}^{\infty}$ converges pointwise on $(0, \infty)$. Be sure to define the limit function $f: (0, \infty) \to \mathbf{R}$.
 - (b) [15 points] Prove that the sequence $(f_n)_{n=1}^{\infty}$ converges uniformly on $[c, \infty)$ for every $c \in (0, \infty)$.
- 4. (a) [5 points] Finish the following definition: A sequence $(a_n)_{n=1}^{\infty}$ of real numbers is said to be **Cauchy** if...
 - (b) [5 points] Finish the following definition: A function $f: \mathbf{R} \to \mathbf{R}$ is said to be uniformly continuous on a nonempty set $E \subseteq \mathbf{R}$ if...
 - (c) [15 points] Suppose that $f: \mathbf{R} \to \mathbf{R}$ is a uniformly continuous on a nonempty set $E \subseteq \mathbf{R}$. Prove that if $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence of points in E then the sequence $(f(a_n))_{n=1}^{\infty}$ is Cauchy.