Multivariable Calc Problems for Math Comps 2020

Solutions

1. We need the gradient:

$$
\begin{gathered}
\nabla f(x, y)=\langle-x,-y\rangle / \sqrt{x^{2}+y^{2}} \\
\nabla f(6,8)=\langle-3 / 5,-4 / 5\rangle
\end{gathered}
$$

The directional derivative is then (turning the direction vector into a unit vector)

$$
\langle-3 / 5,-4 / 5\rangle \cdot\langle 3 / 5,-4 / 5\rangle=-9 / 25+16 / 25=7 / 25
$$

So the hiker is going uphill, experiencing a slope of $7 / 25$.
2. Apply Lagrange multipliers, which yields the following system of equations to solve:

$$
\begin{gathered}
y=8 \lambda x \\
x=18 \lambda y \\
4 x^{2}+9 y^{2}=32
\end{gathered}
$$

Substituting the first equation into the second gives $x=144 \lambda^{2} x$, so either $x=0$ (but $(0,0)$ doesn't satisfy the constraint) or $\lambda= \pm 1 / 12$. Plugging the latter into first equation gives $y= \pm 2 / 3 x$; feeding that into the constraint leads to $4 x^{2}+9 \cdot \frac{4}{9} x^{2}=32$, which simplifies to $x^{2}=4$. Hence the candidates are $f(\pm 2, \pm 4 / 3)=8 / 3$ and $f(\pm 2, \mp 4 / 3)=-8 / 3$. We conclude that the absolute max of $8 / 3$ occurs at $\pm(2,4 / 3)$ and the absolute min of $-8 / 3$ occurs at $\pm(2,-4 / 3)$.
3. Working in either polar or spherical coordinates works fine for this problem. To use polar, determine where the sphere $r^{2}+z^{2}=6$ intersects the cone $z=\sqrt{3} r$ by finding the positive solution of $r^{2}+3 r^{2}=4$, which is $r=1$.

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{1}\left(\sqrt{4-r^{2}}-\sqrt{3} r\right) r d r d \theta \\
& =\left.2 \pi\left(-\frac{1}{3}\left(4-r^{2}\right)^{3 / 2}-\frac{\sqrt{3}}{3} r^{3}\right)\right|_{0} ^{1}=\frac{8 \pi}{3}(2-\sqrt{3})
\end{aligned}
$$

In spherical coordinates, the integral is

$$
V=\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{8 \pi}{3}(2-\sqrt{3})
$$

4. Use Green's Theorem to convert to easier double integral:

$$
\begin{aligned}
\int_{C}(\ln x+y) d x-x^{2} d y & =\int_{1}^{3} \int_{1}^{4}(-2 x-1) d y d x \\
& =\int_{1}^{3} 3(-2 x-1) d x \\
& =-\left.3\left(x^{2}+x\right)\right|_{1} ^{3}=-30
\end{aligned}
$$

AMHERST COLLEGE
 Department of Mathematics and Statistics

Comprehensive Examination: Linear Algebra
 January 31, 2020

5. Let $A=\left[\begin{array}{cccc}1 & -2 & -3 & 3 \\ -1 & 2 & 0 & 3 \\ -1 & 2 & -2 & 7\end{array}\right]$.
(a) (5 points) Explain what is meant by the null space (or kernel) of a matrix.
(b) (10 points) Find a basis for the null space (kernel) of A.
(c) (10 points) Find a basis for the column space (span of the columns) of A.
6. (25 points) Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis of a vector space V. Prove that $\left\{\mathbf{v}_{1}-\mathbf{v}_{3}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right\}$ is also a basis for V.
7. Let V be a vector space, and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a set of three vectors. Define $T: \mathbb{R}^{3} \rightarrow V$ by

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=x \mathbf{v}_{1}+y \mathbf{v}_{2}+z \mathbf{v}_{3} .
$$

(a) (5 points) Prove that T is a linear transformation.
(b) (10 points) Prove that if S is linearly independent, then T is one-to-one (injective).
(c) (10 points) Prove that if $\operatorname{Span}(S)=V$, then T is onto (surjective).
8. Let $A=\left[\begin{array}{ccc}-4 & 3 & 0 \\ -6 & 5 & 0 \\ 0 & 0 & -1\end{array}\right]$.
(a) (10 points) Determine the eigenvalues of A.
(b) (15 points) For a basis for the eigenspace of each eigenvalue.

Solutions

5. (a) The null space of A is the set

$$
\left\{\mathrm{x} \in \mathbb{R}^{4}: A \mathrm{x}=0\right\}
$$

(b) The null space is unaffected by elementary row operations. Therefore we perform row-reduction as follows.

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & -2 & -3 & 3 \\
-1 & 2 & 0 & 3 \\
-1 & 2 & -2 & 7
\end{array}\right] } & \rightarrow\left[\begin{array}{cccc}
1 & -2 & -3 & 3 \\
0 & 0 & -3 & 6 \\
0 & 0 & -5 & 10
\end{array}\right] \quad \text { (add R1 to both R2 and R3) } \\
& \rightarrow\left[\begin{array}{cccc}
1 & -2 & -3 & 3 \\
0 & 0 & 1 & -2 \\
0 & 0 & -5 & 10
\end{array}\right] \text { (divide R2 by }-3 \text {) } \\
& \rightarrow\left[\begin{array}{cccc}
1 & -2 & 0 & -3 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { (add 5R2 to R3 and 3R2 to R1) }
\end{aligned}
$$

From the reduced row echelon form, me may directly read the general solution to $A \mathbf{x}=\mathbf{0}$:

$$
\begin{aligned}
x_{1}= & 2 x_{2}+3 x_{4} \\
x_{3}= & 2 x_{4} \\
x_{2}, x_{4} & \quad \text { free variables. }
\end{aligned}
$$

In vector form, this reads

$$
\left[\begin{array}{c}
2 x_{2}+3 x_{4} \\
x_{2} \\
2 x_{4} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
3 \\
0 \\
2 \\
1
\end{array}\right] .
$$

Therefore one basis for the null space is

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
2 \\
1
\end{array}\right]\right\}
$$

(c) In the reduced row echelon form of A, pivots occur in columns 1 and 3. This mean that columns 1 and 3 of the original matrix necessarily form a basis for the column space. So one basis for the column space is

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
-2
\end{array}\right]\right\} .
$$

6. First we claim that $\left\{\mathbf{v}_{1}-\mathbf{v}_{3}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right\}$ is a linearly independent set. Suppose that $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ are constants such that

$$
c_{1}\left(\mathbf{v}_{1}-\mathbf{v}_{3}\right)+c_{2}\left(\mathbf{v}_{2}-\mathbf{v}_{3}\right)+c_{3}\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)=\mathbf{0}
$$

Distributing and rearranging terms gives

$$
\left(c_{1}+c_{3}\right) \mathbf{v}_{1}+\left(c_{2}+c_{3}\right) \mathbf{v}_{2}+\left(-c_{1}-c_{2}+c_{3}\right) \mathbf{v}_{3}=\mathbf{0}
$$

Since $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis of V, it is linearly independent. Thus it follows from the equation above that the following three equations hold.

$$
\begin{aligned}
c_{1}+c_{3} & =0 \\
c_{2}+c_{3} & =0 \\
-c_{1}-c_{2}+c_{3} & =0
\end{aligned}
$$

Adding all three equations together yields $3 c_{3}=0$, hence $c_{3}=0$. Substituting this into the first two equations yields $c_{1}=0$ and $c_{2}=0$. So indeed $c_{1}=c_{2}=c_{3}=0$, so that original list $\left\{\mathbf{v}_{1}-\mathbf{v}_{3}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right\}$ is linearly independent.
Now, $\operatorname{dim} V=3$ since we are given that it has a basis of three elements. Hence any linearly independent set of three vectors in V must be a basis; it follows that $\left\{\mathbf{v}_{1}-\mathbf{v}_{3}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right\}$ is a basis of V.
Alternatively, it is also possible to show directly that $\left\{\mathbf{v}_{1}-\mathbf{v}_{3}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right\}$ spans V.
7. (a) It suffices to show that for any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ and any $c \in \mathbb{R}$, $T(\mathbf{x}+c \mathbf{y})=T(\mathbf{x})+c T(\mathbf{y})$. We can compute as follows.

$$
\begin{aligned}
T(\mathbf{x}+c \mathbf{y}) & =T\left(\left[\begin{array}{l}
x_{1}+c y_{1} \\
x_{2}+c y_{2} \\
x_{3}+c y_{3}
\end{array}\right]\right) \\
& =\left(x_{1}+c y_{1}\right) \mathbf{v}_{1}+\left(x_{2}+c y_{2}\right) \mathbf{v}_{2}+\left(x_{3}+c y_{3}\right) \mathbf{v}_{3} \\
& =\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}\right)+c\left(y_{1} \mathbf{v}_{1}+y_{2} \mathbf{v}_{2}+y_{3} \mathbf{v}_{3}\right) \\
& =T(\mathbf{x})+c T(\mathbf{y})
\end{aligned}
$$

as desired.
(b) We recall that T is one-to-one if and only if it has trivial kernel. Therefore it suffices to show that $T(\mathbf{x})=\mathbf{0}$ implies $\mathbf{x}=\mathbf{0}$. Now, if $T(\mathbf{x})=\mathbf{0}$, then

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{0}
$$

from which it follows, since $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent, that $x_{1}=$ $x_{2}=x_{3}=0$, i.e. $\mathbf{x}=\mathbf{0}$. So the only element of the null space is $\mathbf{0}$, so indeed T is one-to-one.
(c) Suppose that \mathbf{w} is any element of V. We must show that there exists $\mathbf{x} \in \mathbb{R}^{3}$ such that $T(\mathbf{x})=\mathbf{w}$. Since $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ spans V and $\mathbf{w} \in V$, there exist constants c_{1}, c_{2}, c_{3} such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{w}$. In other words

$$
T\left(\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]\right)=\mathbf{w}
$$

So indeed \mathbf{w} is in the image of T. This shows that T is onto.
8. (a) The characteristic polynomial of A is

$$
\begin{aligned}
\left|\begin{array}{ccc}
-4-\lambda & 3 & 0 \\
-6 & 5-\lambda & 0 \\
0 & 0 & -1-\lambda
\end{array}\right| & =(-1-\lambda)\left|\begin{array}{cc}
-4-\lambda & 3 \\
-6 & 5-\lambda
\end{array}\right| \text { (cofactor expansion) } \\
& =((-4-\lambda)(5-\lambda)-3(-6))(-1-\lambda) \\
& =\left(\lambda^{2}-\lambda-2\right)(-1-\lambda) \\
& =-(\lambda+1)(\lambda-2)(\lambda+1) \\
& =-(\lambda+1)^{2}(\lambda-2)
\end{aligned}
$$

Hence there are two eigenvalues: $\lambda=-1$ and $\lambda=2$.
(b) First consider $\lambda=-1$. Its eigenspace is the null space of

$$
A+I=\left[\begin{array}{ccc}
-3 & 3 & 0 \\
-6 & 6 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Canceling the second row with twice the first and dividing the first by (-3), we see that the reduced row echelon form of this matrix is $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, and thus its null space has basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Hence this is the eigenspace of $\lambda=-1$.
Now consider $\lambda=2$. Its eigenspace is the null space of

$$
A-2 I=\left[\begin{array}{ccc}
-6 & 3 & 0 \\
-6 & 3 & 0 \\
0 & 0 & -3
\end{array}\right]
$$

Canceling the second row, scaling the first and third row, and then reordering the row, we obtain the following reduced row echelon form of $A-2 I$:
$\left[\begin{array}{ccc}1 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. The null space is therefore spanned by the vector $\left[\begin{array}{l}\frac{1}{2} \\ 1 \\ 0\end{array}\right]$, or
equivalently by $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$. So one basis for the eigenspace of $\lambda=2$ is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right\}$.

