Fitty' Lessons in Basic Topology

MATH455 Course Materials®

with notes by Jonathan Che '18

Spring 2017

Due to a snow storm, the lesson on February 9 was cancelled. So a more proper title would be Fourty-Nine
Lessons in Basic Topology.
2arraunged in chronological order.
3Solution to homework problems are not included.
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Pre-semester Survey

To know more about your background so that we can try to tailor the course to fit your
study goal as much as possible, it would be great if you can answer the following questions
by replying to this email.

(1) What is/are your major area(s) of study? And what is/are the area(s) you wish to
study but haven’t found a chance to do so?

(2) Name one or two (or more) theories/theorems/concepts etc. you learned in your pre-
vious academic career (not limited to mathematics) that actually mean(s) something
(e.g., being beautiful /elegant/ingenious) to you. Explain why you feel that way, if
you can.

(3) What courses have you taken in mathematics? Have you taken a course in group
theory? If not, did you come across the definition of a group from somewhere else?

(4) Did you have previous experience with topology? Whether you had or not, what is
your own conception of the word/subject topology?

(5) What (topics/methods) do you want to learn the most out of a course in topology, if
there is any?

Ynspired by David Foster Wallace’s teaching materials. Reference: The David Foster Wallace Reader, le,
Reader, Little, Brown and Company, 2014.



MATH 455-01 Calendar, Spring 2017

Monday
11:00 A.M.
SMUD 207

Tuesday

Week 1

Jan 23

L1 Introduction

Week 2

Jan 30
Quiz #1
L52.2

Week 3

Feb 6
Quiz #2
L93.3

Week 4

Feb 13
Quiz #3
L1235

Week 5

Feb 20
Quiz #4
L16 4.2

Week 6

Feb 27
Quiz #5
L205.2

Week 7

Mar 6
Quiz #6
L235.4

Mar 20
Quiz #7
L27 6.1

Wednesday Thursday Friday
11:00 A.M. 1:00 P.M. 11:00 A.M.
SMUD 207 MERR 403 SMUD 207

Jan 25 Jan 26 Jan 27
L2 2.1 L3 2.1 L4 22
Feb 1 Feb 2 Feb 3
Hwi#1 due
L6 3.1 L7 3.2 L8 3.3
Feb 8 Feb 10
Hw#2 due
L103.4 L113.5
Feb 15 Feb 16 Feb 17
Hw#3 due
L13 3.6 L144.1,4.2 L154.2
Feb 22 Feb 23 Feb 24
Hw#4 due
L17 4.3 L1843 L19L5.1
Mar 1 Mar 2
Hw#5 due
L2153 L2253
Mar 8 Mar 9 Mar 10
Hwi#6 due
L2454 L255.5

Week 10

Mar 27
Quiz #8
L316.4

Week 11

Apr 3
Quiz #9
L357.4

Week 12

Apr 10
Quiz #10
L398.3

Week 13

Apr 17
Quiz #11
L42 8.5

Mar 22 Mar 23
Hw#7 due

L28 6.2 L296.3 L306.4

Mar 29 Mar 30 Mar 31
Hw#8 due

L327.1 L337.2 L3473

Apr 5 Apr 6 Apr7

Hw#9 due

L367.5 L37 8.1 L388.2

Apr 12 Apr 13
Hw#10 due

L408.3 L418.4

Apr 19 Apr 20 Apr 21
Hw#11 due

L43 8.6

L4491

L459.2

Week 14

Week 15

Apr 24
Quiz #12
L46 9.4

Apr 26

L4710.1

Apr 27
Hw#12 due
L48 10.2

Apr 28

L4910.2



Class meetings:
Instructor:
Office:

Office Hours:
Email:

Text:

Description:

MATH 455-01, Spring 2017: Topology

MWF 11:00 — 11:50, Seeley Mudd 207; Th 1:00 — 1:50, Merrill 403.

Yongheng Zhang

Converse Hall 307

M 1:30 — 3:00; W 4:00 — 6:00; Th 10:30 — 12:00; or by appointment.
yzhang@ambherst.com

M. A. Armstrong, Basic Topology, Undergraduate Texts in Mathematics, Springer.
Two copies of the textbook are reserved in the science library.

On the first level, topology is the study of shapes of (topological) spaces. The most
familiar space from single-variable calculus or basic analysis is the real line R equipped

with the standard topology. (Warning: there are other topologies on R.) But shapes are

not limited to R. Think about the circle S*. Fourier series are actually defined on it. S! is
an example of a huge collection of spaces called differentiable manifolds on which you can
also do analysis. (Without these intellectual endeavors, general relativity wouldn’t have been
discovered and thus GPS wouldn’t have been as accurate as it has been.) Topology also
studies other types of spaces, which are not locally as nice as manifolds (e.g., most of the
letters in the English alphabet) as well as more exotic shapes like fractals.

In calculus and analysis, it wouldn’t be much fun only to study the real line R itself. There,
functions from R (or a subset of it) to R are the main objects of study, where continuity

is usually the first property to impose. Extending this idea, on the second level, topology is
the study of (continuous) functions/maps between spaces. For example, a knot as

a space itself is a circle S*, but even from intuition, there are many different types of knots.

In fact, a knot can be seen as a map from S! to R3 (or some equivalence class of it). To take

a famous example, we will see in class that any continuous function f from the two-dimensional
closed unit disk D? in R? to itself must have a fixed point. This means that there is at least
one z € D? such that f(z) = x. This is called the two-dimensional Brouwer fixed point theorem.
John Nash gave two proofs of his equilibrium theorem, one using a higher dimensional version
of the Brouwer fixed theorem and the other using the Kakutani’s fixed point theorem, which
earned him a Nobel Prize in Economics. (Within the circle of mathematics, he is more famous
for his much more difficult theorem on isometric embedding of Riemannian manifolds.)

On the third level, topology is the study of maps between maps, which are called
homotopies. There are just way too many maps between two spaces. But if we do not
distinguish two maps whenever there is a homotopy between them, then there are usually
just discretely many of them. These lead to computable structures. Fundamental groups and
higher dimensional versions of them are well-known but still-far-from-well-studied examples.
Homologies are also good algebraic structures. Though it’s harder to define homologies, it’s
easier to compute them.

Then there are maps between maps between maps. This pattern continues ad infinitum. But
this is area of current research, which is still in its infancy. We stop on the third level.

As physicists who categorize the fundamental particles, chemists who arrange atoms in the
periodic table and biologists who put trees in family, genus and species, mathematicians, who
share the collector instinct, also classify topological spaces. There are two ways to do it. One
do not distinguish between either homeomorphic spaces or homotopy equivalent spaces.
These are second and third level notions, respectively. Topological or homotopy invariants,
e.g., fundamental groups and homologies mentioned above, are used to do the classification once
spaces from certain collection have been enumerated.
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Topics:

Grading:

Attendance:

Taking Notes:

Exams:

We will study topological spaces, continuous maps, compactness, connectedness

and path connectedness in their most general form. Then creating new spaces from
the old (subspace topology, product topology, quotient topololgy) will be our next
step. Afterwards, we will scrutinize homotopy, homotopy type and fundamental group.
After the theory of triangulation is developed, the problem of the classification of
surfaces will be solved. Then we study homology, which is the foundation for the new
area called topological data analysis. Applications are abundant. For example, knots
and links can be studied by the tools developed.

Your grade will be determined by the weighted scores as follows:
Midterm 1 20%

Midterm 2 20%

Final exam 35%

Homework 20%

Quiz 5%

You are expected to attend every class, because every lecture is essential
to your understanding of topology. If you have to miss a class
for medical, religious, or the like reasons, let me know in advance.

You are expected to take careful notes for this class. One reason is that much of what we will
explore in class is not in the textbook. Another reason is that most problems in quizzes,
homework and exams are taken either from the homework or from the notes.

But a more important reason is that for a comprehensive course like topology, it is important
to follow the narrative and to build your panoramic view of the landscape. If you do not
constantly review your notes (I would rather say your journal) and to think about what

is happening, it is easy to get lost.

Midterm 1: Friday, March 3, in class.

Midterm 2: Friday, April 14, in class.

Final exam: To be announced.

Only pencils and an eraser/ pens are allowed in exams.
Abide by the Statement of Intellectual Responsibility.



Homework:

Late Homework:

Quizzes:

Doing homework is the most important part of this class. One can only learn
mathematics by getting hands dirty. Homework problems will be posted in Moodle for
each class day. And problems assigned each week (Monday, Wednesday, Thursday and
Friday) will be due the Thursday of the following week. See the calendar for the precise
due dates. There are 12 homework sets in total. You must do all the problems

from all homework sets in order to excel on the exams.

Start working on the problems as soon as possible. Working in groups is highly
recommended: you can seek help from each other and we usually understand

our knowledge better by explaining it to others. However, I suggest you get together only
after you have spent time thinking about each problem on your own.

You are also very welcome to go to my office hours or send me an email if you

have questions.

Your homework solution must be totally your own work. That means you must write
down the solution in your own words, without looking at your group members’ work.
Copying other’s work is considered a violation of the Statement of Intellectual
Responsibility.

As a courtesy to your grader and for your own benefit of developing neat
writing styles, please (1) do the problems in increasing order as listed in

Moodle; (2) write in complete mathematical sentences; (3) write legibly (it will
be particularly pleasing to everyone if you strive for the standard of calligraphy);
(4) write your name on each page and staple them in order.

Homework sets are due at the beginning of due date classes.

If you expect illness or emergency will prevent you from submitting your homework

on time, let me know before the due dates so that we can make arrangements

without penalty. However, late homework (not to be turned in at the beginning
of due day class) without the above excuses will receive score zero!

Starting from the second week, there will be a very short quiz at the end of every Monday
class. It tests basic concepts introduced the previous week. See the calendar for the dates.
Quiz only counts 5% toward your score. Its purpose is to help you keep up with the
progression of the course.
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Problem for Lesson 1: Introduction

January 23, 2017

1. Construct a strip with three “left-handed” half-twists in the following way. The
Beginning Topologist’s Toolbox you got in class today is definitely of help. If you do
not have one, let me know. It’s a simple trip to Walmart, Target and Jo-Ann Fabrics
and Crafts for me.

This is the image of an embedding of the usual Mobius strip (with “one half-
twist”) into the three dimensional world we live in. Now cut the strip along the
central circle. Ignoring the thickness (and thus the twists), what do you get? (Before
doing the cutting, try to imagine what you would get.) Google “knot theory” and
then read the Wikipedia article with the same title. Is your knot the same as the one
you saw in the first two pictures there? Check out the last two pictures in Section
4.1 of this article to confirm your answer. So what is the precise name of your
knot? (You only need to record your answer to this last question for this problem
for the homework you will turn in next Thursday.)
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Problems for Lesson 2: Topological Spaces

January 25, 2017

The purpose of homework is to enhance your understanding of the notions, theorems and theories introduced in class and
to enable you to apply them to new situations. There are several ways to do that. For example, in today’s homework, you
will explore an alternative way to define a topological space, check why certain axiom has to be in that way and to apply your
understanding to a simple example and a slightly more complicated example.

1. Given a topological space X (The collection 7 doesn’t have to be written out explic-
itly. But since it says topological space, a collection of open sets is assumed to exist.),
a subset C' is said to be closed if its complement X\C' is open. Prove that if X is a
topological space, then
(1) 0, X are both closed;
(2) if Cy and Cj are closed, then C; U C} is also closed;
(3) if C;, i € I are closed, then NM;e;C; is also closed.

Hint: the De Morgan’s law we used in the Ry, example in class is most of what you
need.

In fact, the above properties of closed sets also imply the defining properties of
open sets. (You don’t need to prove this.) So a topological space can be equivalently
defined via closed sets.

2. In the definition of a topological space, we only require that the intersection of two
(equivalently, finitely many) open sets is open. Give an example of infinitely
many open sets in R with the standard topology such that their intersection is not
open. (If you forget how to do/have never done this little exercise in real analysis,
then you can easily find its answer by Googling.)

3. Is the following a topological space? Prove your claim.

X ={1,2,3,4}, T = {0, {1}, {2}, {1,2}. {3,4},{1,2,3,4}}

4. Let X be R% Given a = (a1,as) and b = (b, be) in X, recall that their Euclidean
distance d is given by

d(a, b) = \/(CLl — b1)2 + (CLQ — b2)2.

The open ball centered at a with radius € is denoted by B.(a), which is defined as
{z € R*|d(x,a) < €}. A subset O of X is called open if for any z € O, there is € > 0
such that z € B.(z) C O. Prove that

(1) X with the open sets described above indeed is a topological space;

(2) each open ball is open;

(3) each open set of X is a union of open balls.

Hint: Pictures help. We proved analogous results in class for R with the standard

topology.
1
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Problems for Lesson 3: Bases for Topologies

January 26, 2017

(1) (Notes review question) Where was the second defining property of basis used in
proving that the topology it generates indeed is a topology?

(2) Let X be the set R. Let each element of B be an interval of the form [a,b) where
a < b. Prove that
(1) B is a basis (the topology it generates is called the lower limit topology of R
and in this case the space is written R;);
(2) any open set in R with the standard topology is an open set in R; but not vice
versa. In this case, people say that the topology of R; is strictly finer than the
standard topology of R.

(3) Prove the last theorem stated in class: Let (X, 7) be a space. Let C be a subcollection
of T. (So elements of C are open sets.) If for each O € T, and each z € O, there is
C € C such that x € C' C O, then C is a basis for 7, which means
(1) C is a basis, and
(2) the topology C generates coincides with 7. (Hint: Let the topology C generates
be T'. Show that 7/ C T and T C T".)

(4) Let X = R? be the topological space in the last homework problem from yesterday.
Let the elements of C be open rectangles whose edges are parallel to the coordinate
axes: {(z,y) € R*a < x < b,c <y < d}. Use the previous theorem to show that C
is a basis generating the same topology.
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(1)

(2)

Problems for Lesson 4: Continuous Functions

January 27, 2017

Prove that f : X — Y is continuous if and only if for any closed set C'in Y, f~1(C)
is closed.
Hint: The set-theoretic fact f~1(Y\O) = X\ f7'(O) is useful here.

Recall that in calculus and analysis, f : R — R is continuous at xqg € R if for
any given € > 0, there is § > 0 such that whenever x € R satisfies |x — zo| < 0,
|f(xz) — f(zo)] < e. Then f: R — R is said to be continuous if f is continuous at
every xg € R.

Prove that for f : R — R, it is continuous in the sense of calculus and analysis
if and only if it is continuous in the sense of topology. But you saw how easy the
definition of continuity is in topology.

Hint: the calculus definition of f : R — R being continuous at xy can be slightly
reformulated as follows: given any € > 0, there is § > 0 such that for any z €
(w0 — 0,20 +0), f(x) € (f(zo) — €, f(x0) + €).

Furthermore, the characterization of continuity using basic open sets is slightly
easier than the definition of continuity using open sets.

You can find the solutions to the above problems (probably for all standard homework problems in topology) within a split
second using Google. Do that only when you are stuck but have worked on each problem at least for half an hour. Going
through the notes again and reading the textbook (in the future) might be a better first way to look for help. In graduate
school, it’s not uncommon to work on a homework problem for three months.



MATH 455 Quiz #1 Name:
1. (2 points) Complete the definition: (X,7) is a topological space if

2. (2 points) Complete the definition: B is a basis for X if

3. (2 points) State the two equivalent ways of constructing/generating a topology T
from a basis B.

4. (2 points) Complete the definition: f: X — Y is continuous if

5. (2 points) This is a survey question. Circle your choice. How do you feel about the
amount of homework assigned? The homework is
e way too much.
e manageable but I would still prefer less.
e just the right amount.
e too little and I want more.
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Problems for Lesson 5: Homeomorphism
January 30, 2017

Problem (2) will be graded.

Just for this time, 4 points will be assigned for completion of problems from L5. How
Hw+#1, Hw#2 and Hw#n for 3 < n < 12 will be graded is explained in the email titled “a
few things about MATH 455”.

(1) Let Y be a subspace of X. Recall that this means O is an open set in Y if and only
if there is an open set U in X such that O = U NY. Prove that this indeed gives a
topology for Y.

(2) Let Y be a subspace of X and B a basis for the space X. Prove that {BNY|B € B}
is a basis generating the subspace topology of Y.
Hint: Use Problem (3) from Lesson 3 (last Thursday).

(3) Who is this mathematician? What is the title of his Ph.D. thesis in its original
language?

(4) Prove (again) the last theorem we stated in class: If f : X — Y is a homeomorphism
and X is Hausdorff, then Y is also Hausdorff.

(5) Prove that being homeomorphic is an equivalence relation. (Thus, we can form
equivalence classes called topological types of topological spaces.) This means
(a) id : X — X is a homeomorphism;
(b) if f: X — Y is a homeomorphism, then sois f~!: YV — X;
(c)if f: X - Y and ¢g:Y — Z are homeomorphisms, then sois go f : X — Z.
1
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Problems for Lesson 6: Introduction to Compactness

February 1, 2017

Problem (3) will be graded.

This is NOT a long homework set, even though it exceeds one page. It looks verbose only because it tries to make things
easier with elaboration.

(1)

We can also use closed sets to characterize compactness. Prove that X is compact
if and only if given a collection of closed sets C;, ¢+ € [ in X, if for any finite sub-
collection, the intersection of its elements is nonempty, then N;c;C; is also nonempty.

Hint: First use the definitions of closed set and the De Morgan law to prove that
X is compact if and only if given any collection of closed sets C;, ¢ € I in X, if N;e;C;
s empty, then there is a finite sub-collection such that the intersection of its elements
15 also empty. Then apply contrapositive to the blue italic clause.

Let A be a subset of the topological space X. Recall that A is said to be compact in
X if A is compact in the subspace topology of X, which means for any open cover
of A by open sets in the subspace topology of A, it has a finite subcover.

Prove that A is compact in X if and only if for any open cover of A by open sets
in X, it has a finite subcover.

Hint: Recall O is open in A means there is U open in X such that O = U N A.

Definition. A space X is called locally compact if for any x € X, there is an open
set U in X and a compact subset K in X such that x € U C K.

(a) Prove that any compact space is locally compact.

(b) Prove that R (with the standard topology) is not compact but it is locally
compact.

This is mainly a reading problem.

Definition. Let X be a set. A metric on X is a function d : X x X — R
satisfying three properties:
M1 d(z,y) > 0 for any z,y € X and d(x,y) = 0 if and only if z = y.
M2 d(z,y) = d(y, z) for any x,y € X.
M3 d(x,y) + d(y, z) > d(z, z) for any z,y,z € X.

The metric d is also called a distance function. It abstracts and generalizes
the usual notion of Euclidean distance. M1 means any value of distance should be

nonnegative and if two points occupy the same location, then their distance should
1



be zero and vice versa. M2 means the distance from x to y should be the same
as the distance from y to x. This is sometimes called the symmetric property. M3
means distance satisfies the triangle inequality. Examples abound. R” for any n € N
has the Euclidean metric. You can also put other metrics on them. For example,
google Taxicab metric. It’s used in compressed sensing. This metric was invented
by German mathematician Hermann Minkowski, who was Albert Einstein’s math
teacher at nowadays ETH Zurich. He recast Einstein’s theory of special relativity in
the differential geometric language of space-time, which is still used today.

As another example, let C0, 1] be the set of all the continuous functions from [0, 1]

to R (or C). We can define d(f,g) as fol |f(z) — g(z)|dz. Using the properties of
integral, one can show that d is indeed a metric (meaning satisfying M1,M2 and M3).

What is metric good for? For us, it can be used to define a topology.

Here is how it is done. Given (X, d), let B.(z) be defined by {y € X|d(z,y) < €}.
We call it the open ball centered at x with radius some positive number €. Let B be
the collection of all such open balls. You can check that B is a basis. Notice that the
open balls are abstract: they don’t necessarily look like open balls in R?. You need
to use M1, 2,3 to check this.

Definition. The metric topology for (X, d) is the one generated by the above
basis. With this topology, X is called a metric space.

Recall how they were defined: R is actually a metric space for the distance function
|z —y| and R? a metric space for the Euclidean distance. C[0, 1] under that “integral
metric” also becomes a topological space. This is our first nontrivial function space
you see in this course. Its elements are functions. We say it’s nontrivial because fix-
ing a singleton {a}, given any set X and any = € X, x can be viewed as a function
from {a} to {z}.

An immediate property of metric space is that if X is a metric space, then it is
Hausdorff. You can show that given any x # y € X, the two basic open sets B, /»(x)
and B./(y), where € is the distance between x and y, are disjoint using the properties
of the metric function.

Lastly, using the above property, we now know that not every topological space
admits a metric. Think about Ry.. You checked that it’s not Hausdorff. So it is
not a metric space. This means there is no metric d on the set R inducing the finite
complement topology. People sometimes say Ry, is not metrizible.

THE END.
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Problems for Lesson 7: Hausdorft Space, Compact Set,
Closed Set and Homeomorphism

February 2, 2017

Problem (4) will be graded.

(1) Let f: X — Y be a continuous function and A a subspace of X. Prove that the
restriction of f to A is also continuous. (A function consists of three parts: the do-
main, the codomain and the rule of assignment. If one of them changes, the function
is not the original function any more. For this problem, the domain is changed to
the subspace A.)

(2) Let Cy and Cy be compact subsets in the space X. Show that C; UC} is also compact
in X. (This is equivalent to saying the union of finitely many compact subsets of X
is also compact.)

(3) Give an example of infinitely many compact subsets of R whose union is not compact.
(Mine example is {[n,n + 1] : n € Z}. I believe you must have other examples in
mind.)

(4) Let X be Hausdorff and C;, i € I an arbitrary collection of compact subsets of X.
Prove that N.c;C; is also compact.

Hint: Use the first two theorems we proved in class today. To get started, notice
that since X is Hausdorff, these C; are closed in X. So N;c;C; is also closed in X by
Problem 1 from L2. From there you can show that it is also compact.

Remark. The Hausdorff property is essential here. You can’t do this problem
without it.
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Problems for Lesson 8: Compact Sets in Metric Spaces
February 3, 2017

Problem (1) will be graded.

(1) Let f: X — R be a continuous function, where X is compact. Prove that f attains
its maximum and minimum values. This means that there are x,, x5 € X such that

f(z1) >y forall y € f(X) and f(xg) <y for all y € f(X).
Hint: See the proof of (3.10) in the textbook.

(2) Who is this mathematician? What’s the title of his famous Ph.D. thesis in its original
language?

(3) Definition. Let A be a subset of the space X. z € X is called a limit point of A if
for every open set O in X which contains x, (O\{z}) N A # 0.

Prove that an infinite subset of a compact space much have a limit point.
Hint: See (3.8) in the textbook.

(4) Prove the Lebesgue’s Lemma: Let X be a compact metric space and O an open
cover of X. Then there is a number € > 0 (called a Lebesgue number of Q) such that
any open ball with radius € in X is contained in some open set from the cover O.
Hint: See (3.11) in the textbook.



MATH 455 Quiz #2 Name:

1. (3 points) Complete the definition: f: X — Y is a homeomorphism if

2. (4 points) Complete the definition: X is compact if

3. (3 points) Let A be a compact subset of the metric space X. Prove that A is bounded
in X, which means A is contained in some open ball in X.
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Problems for Lesson 9: One-Point Compactification

February 6, 2017

Problem (3) will be graded.

(1)

()

(6)

Check that the union of an arbitrary collection of open sets in the one-point com-
pactification Y of a Hausdorff space X is open.

Hint: Use Theorems 1 and 2 from L7 and also Problem (4) from L7. Now you also see
why we need X be Hausdorff. The following might also be useful. If O is open in X,
then there is closed C' in X such that O = X\C. So OU(Y\K) = (X\C)U(Y\K) =
(Y\C)U (Y\K) =Y\(CNK).

Let X be a Hausdorff space and Y its one-point compactification. Prove that the orig-
inal topology on X and the subspace topology which X inherits from Y are the same.

Prove that the one-point compactification Y of a Hausdorff space X indeed is com-
pact.

Hint: Any open cover of Y must contain an open set O which contains co. Notice
that O = Y'\C where C is some compact subset of X.

Let X be a Hausdorff space and Y its one-point compactification. Prove that Y is
also Hausdorff if and only if X is locally compact (introduced in Problem (3) of
L6).

Comment: Now you see the usefulness of the definition of local compactness. Not
every space is locally compact. For example, Q is not. The key ingredient in see-
ing this is the fact that there is an irrational number between any two different real
numbers. This is a good example to have in mind.

Show that the one-point compactification of [0, 1] is not homeomorphic to a circle.
Hint: A special singleton is open in this compactified space. This is not the case for a cirlce.

Who is this mathematician? (Hint: One-point compactification is also named after
him. Without the enlightening of his lifelong mathematician friend and educator
Andrey Kolmogorov, the terrain of mathematics wouldn’t be as rich as it is now.)
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Problems for Lesson 10: Product Topological Spaces

February 8, 2017

Problem (3) will be graded.

(1)

(5)

(6)

Let By and By be bases for the topological spaces X and Y, respectively. Prove that
B = {Bl X Bngl S B)(,BQ S By}

is a basis generating the product topology on X x Y.
Hint: Use Problem (3) of L3.

Let A and B be subspaces of the topological spaces X and Y, respectively. Prove
that the product topology on A x B is the same as the subspace topology it inherits
from the product topology on X x Y.

Hint: Uier(U; N A) x (V; N B) = User (U; x V) N (A x B) is used for proving both
directions.

The Tube Lemma. Let X and Y be spaces. We also assume Y is compact. Let
x € X and O be an open set in X x Y such that {z} x Y C O. Prove that there is
an open set U in X such that x € U and U x Y C O.

Hint: Start as follows. For each y € Y, since (z,y) € {x} x Y C O and O is open
in X x Y, there are open sets U, in X and V} in Y such that (z,y) € U, x V,, C O.
The open sets V,,, y € Y form an open cover of Y. Since Y is compact, you know
what to say next. Finally, let U be the intersection of the corresponding finitely many
U;,;’s. Tt is open in X because this is a finite intersection.

Theorem. If X and Y are compact spaces, then so is their product X x Y.

Hint: The proof goes in two steps. Step 1. Start as follows: Let O be any
open cover of X x Y. Then for any x € X, {z} x Y, being homeomorphic to the
compact space Y, is also compact. Notice that O is a cover for {z} x Y, so finitely
many elements in it cover {x} X Y. Let O, be the union of these finitely many
open sets. By the Tube Lemma above, we know there is open set U, in X such that
{z} xY CU, xY CO,. Step 2. Now these U,, z € X form an open cover of X.
Because X is compact, you know what to say next. Since each tube U, is covered by
finitely many open sets from O and finitely many such tubes cover X x Y in total,
finitely many open sets from O cover X x Y.

Theorem. If A and B are compact subsets of X and Y, respectively, then A x B is
compact in X x Y. Hint: This is a direct consequence of (2) and (4).

Prove that the subspace S! x S! C R? x R? is homeomorphic to the familiar doughnut
surface (torus) in R3.
Hint: Draw pictures.
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Problems for Lesson 11: Connected Spaces

February 10, 2017

Problem (3) will be graded.

(1) Prove that A is closed in a topological space if and only if A = A.
(2) Prove that the image of a connected space under a continuous map is connected.

(3) Let A;, i € I be connected subspaces of X. Prove that if N;c;A; is nonempty, then
U;erA; is also connected.

Hint: For the sake of contradiction, suppose C' and D form a separation of U;c;A;.
Let x € N;erA;. Then x € A; for each i € I. Since x € U;crA; and C' U D = U A;,
either x € C or x € D. Without loss of generality, assume that = € C. Since each A;
is connected, either A; C C or A; C D by the last theorem we proved in class. Since
x € A; and x € C, we then must have A; C C for all 7 € I. Then finish the proof.

(4) Prove that S! is connected.
Hint: There are many ways to do this. For example, write S* as the union of two

closed semi-circles. Fach is the image of [0, 1] under a continuous map. Then use (2)
and (3).



MATH 455 Quiz #3 Name:

1. (4 points) Let X be a Hausdorff space. Define the one-point compactification of X.
(You need to define both the set and the topology on it.)

For the next three problems, just write T or F. You don’t have to explain.

2. (2 points) True or False? The one-point compactifications of both [0, 1] and (0, 1) are
homeomorphic to S*.

3. (2 points) True or False? If X and Y are compact spaces, then so is X x Y.

4. (2 points) True or False? A space X is connected if and only if there are no pairs of
nonempty disjoint open subsets A and B of X whose union is X.
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Problems for Lesson 12: Connectedness as a Topological Invariant

February 13, 2017

Problem (2) will be graded.

(1)

(2)

()

Prove that if A C C' in the space X. Then A C C.

Comment: This is a step used in today’s proof that if A is connected in X and
A C B C A, then B is also connected.

Prove that 5% is connected, where S% = {(z,y,2) € R¥|2? + y* + 2* = 1} is the unit
sphere in the 3D Euclidean space.

Hint: There are more than one method. For example, you can view S? as the
union of the closed northern hemisphere and the closed southern hemisphere, each of
which is the homeomorphic image of the closed unit disk on R?. Alternatively, you
can view S? as the closure of S*\{(0,0,1)}.

Prove The Intermediate Value Theorem. Let X be a connected space and
f: X — R be continous. If a,b € f(X) and ¢ satisfies @ < ¢ < b, then there is x € X
such that f(z) = c.

Hint: Suppose this is not the case, namely ¢ ¢ f(X). Then (—oo,c) N f(X) and
(c,00) N f(X) form a separation of f(X). (You do need to check this). This contra-
dicts the fact that f(X) should be connected.

Prove The One-Dimensional Brouwer Fixed Point Theorem. Any continu-
ous function f : [—1,1] — [—1,1] has a fixed point (there is xy € [—1,1] such that
f(xo) = x0.)

Hint: Consider the function g : [-1,1] — R defined by g(z) = f(z) — x, which is
continuous. Apply the Intermediate Value Theorem.

Why doesn’t method of the last proof we did in class today work for proving that R?
is not homeomorphic to R3?
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Problems for Lesson 13: Path-Connectedness

February 15, 2017

Problem (5) will be graded.

(1)

(3)

(4)
(5)

(6)

The Pasting Lemma. Let A and B be closed subsets of the space X and AUB = X.
If f:A—Y and g: B — Y are continuous functions and they agree over AN B,
namely f(z) = g(x) for all z € AN B, then the function h : X — Y defined by
h(z) = f(z) if € A and h(z) = g(z) if x € B is also a continuous function.

Hint: Use Problem (1) of L4, the set-theoretic fact A= (C) = f~1(C)ug=1(C), the
fact that a closed set in a subspace of a space X equals the intersection of a closed
set of X with the subset, and Problem (1) of L2.

Comment: The pasting lemma can be used to prove that the join of two paths
f:00,1] - X, ¢g:[0,1] - X is a path. Before you apply it, you also need
to precompose the continuous functions ! : [0,1/2] — [0, 1] sending ¢ — 2t and
r:[1/2,1] — [0,1] sending ¢ — 2t — 1 to f and g respectively and use the fact that
the composite of continuous functions is continuous.

Let X be a space and zy € X. Show that the space
Ugo :={y € X‘xo and y are joined by a path in X'}

is path connected.
Hint: Use (1). Given x,y € U,,, each of x and y can be joined by a path to z.
You can combine these two path to get a path joining x and y.

Let A and B be path-connected subsets of space X and AN B is nonempty. Prove
that AU B is also path-connected.
Hint: Similar to the above.

Prove that the continuous image of a path-connected space is path-connected.

Prove that the product of two path-connected spaces is path-connected.
Hint: Connect two general points using an “L”-shaped path.

Read the proof of (3.30) in the textbook, which we sketched in class. Where does
the proof break down if we remove the condition that the connected set is open?
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Problems for Lesson 14: Quotient /Identification Spaces

February 16, 2017

Problem (2) will be graded.

(1) Prove that the quotient topology indeed is a topology.
(2) Prove again the last theorem we proved in class today.
Comment: This is an important theorem. It will be used tomorrow.

(3) The following picture shows the standard way to obtain the M&bius strip via a quo-
tient/identification process.

Below are two other ways to obtain the Mobius strip. Try to see why that’s the
case.

Hint: If it 1s too difficult to imagine these two spaces in three dimensional space,
then you can try cutting each into two simpler pieces and then reassemble them in a
different way. Your Beginning Topologist’s Toolbox might be of some help.

1
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Problems for Lesson 15: Maps out of quotient spaces

February 17, 2017

Problem (3) will be graded.

(1) Prove again The Main Theorem we stated and proved in class today.

(2) Let D™ be the unit closed ball in R" and S™~! the boundary sphere of D". Prove
that D"/S™! is homeomorphic to S

Hint: You can read the top half on Page 69 to get some idea. But keep in mind
that the method used in the book is slightly different from ours, though they are
fundamentally the same.

(3) Prove that the three ways of defining the real projective n space RP" yield homeo-
morphic spaces.

Hint: Follow the diagram outlined in class. Prove from the right to the left. (When
checking continuity for a map in The Main Theorem, just say it’s continuous.)



MATH 455 Quiz #4 Name:

1. (2 points) Let X be a space, Y a set and f: X — Y a function from the set X onto
the set Y. Define the quotient topology on Y (induced from this f).

For the next four problems, just write T or F. You don’t have to explain.

2. (2 points) True or False? The space obtained from the closed unit disk in R? by
collapsing the boundary circle into a single point is homeomorphic to S2.

3. (2 points) True or False? If a space is connected, then it is also path-connected.

4. (2 points) True or False? If X and Y are connected, then so is X x Y.

5. (2 points) True or False? If X and Y are path-connected, then so is X x Y.
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Problems for Lesson 16: More about the Real Projective Spaces

February 20, 2017

Problem (3) will be graded.

(1) Let X +Y be the disjoint union of two given disjoint spaces X and Y. Recall that
a subset O is open in X + Y if and only if O = Oy U Oy where O; is open in X and
Os is open in Y. Prove that this indeed gives a topology on X + Y.

(2) Prove that if X and Y are disjoint compact spaces, then X + Y is also compact.

(3) Prove that S? — R* defined by (x,vy, 2) — (2% — y?, 2y, yz, zx) induces an embed-
ding from RP? into R*.

Comment: You can directly cite the fact that the induced map on the bottom of the
triangular diagram s injective, though it is much more fun checking this fact on your
own, partially because you would discover that (z,y, z) — (zy,yz, zx) alone doesn’t
induce an injective map from RP? into R3. It’s a fact that RP? does not embed into
R3.
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Problems for Lesson 17: Topological Groups

February 22, 2017

Problem (1) will be graded.

(1) Let R? be equipped with the standard topology. Define the first binary operation as
(x,y)®(2',y) = (z+2', y+vy'). Define the second binary operation as (z,y)®(x',y") =
(z+ ey +y).

e Show that (R?, @) is a topological group.

e Show that (R?, ®) is also a topological group.

e Show that these two topological groups are not isomorphic. Hint: You can di-
rectly use the fact that for two isomorphic groups, if one is abelian, then so is
the other.

(2) Given a space X and a connected subset C, recall that C is called a connected
component if for any connected subset C’' of X with the property that C C (',
then C = C’. This means C' is actually a maximal connected subset of X (because
if there is a potentially bigger connected subset C’, then C” has to be C).

e Prove that C is closed.
Hint: This is the first half of Theorem 3.27 in the textbook. Or just use the
fact we proved in class that if A is connected and A C B C A, then B is also
connected. (Let B = A.)

e Prove that every connected subset of space is contained in a connected compo-
nent.
Hint: The proof is the paragraph after Theorem 3.27 in the textbook. Or you
can prove it on your own using Problem (3) of L11.

(3) Prove that if H is a topological subgroup of G, then H is also a topological subgroup
of G. Furthermore, if H is normal in G, then H is also normal in G.

Hint: A tedious problem, but everything follows from definition.
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Problems for Lesson 18: Matrix Groups

February 23, 2017

Problem (1) will be graded.

(1) Recall that the orthogonal matrix group O(n) and special orthogonal matrix group
SO(n) are defined as follows:

O(n)={A e M(n)!AAT =1,},50(n)={A¢€ O(n)|det(A) =1}.

(a) Prove that O(n) and SO(n) are topological subgroups of the general linear group
GL(n).

(b) Prove that O(n) and SO(n) are compact. Hint: This is Theorem 4.13 in the
textbook.

(2) The special linear group SL(n) is defined as SL(n) = {A € M(n)‘det(A) = 1}
Prove that SL(n) is a topological subgroup of GL(n).



Exam 1 Study Guide

Exam 1 will take place on Friday, March 3th, in our regular classroom Seeley Mudd 207 during
our regular class time from 11:00 A.M. to 11:50 A.M. It covers the material From Lesson 1 to Lesson
L18. You will not be allowed to use notes, books, calculators, etc. All you need are pencils (pens) and erasers.

The exam will have five problems. Each problem is worth 10 points. Each problem may have several
parts. You may be asked to state a definition, state a theorem, judge whether a statement is true or false, or
prove a statement. If you are asked for a proof, you have to give a logically correct proof written in English
sentences. Scratch work is not considered a proof.

Below is a list of topics from L1 to L18 which you must know for this exam. Exam problems will be
similar to quiz problems, homework problems and anything we did in class. Carefully go through your notes
and homework.

A practice exam will be posted in Moodle. Treat that as a real exam. Find a nice and quiet place and
then try it within the 50-minute time constraint. The solution will also be posted in Moodle so that you
know what I expect from you.

On the day before the exam (Thursday, March 2nd), I will answer your questions in an evening review
session. SMUD 206 has been reserved from 6:30 to 8:00 P.M. for it.

L1 Introduction
— lots of examples of spaces, continuous maps and homotopies

L2 Topological Spaces
— the axioms of a topology
— the equivalent way of defining topology using closed sets
— lots of examples

L3 Bases for Topological Spaces
— basis
— two equivalent ways of generating a topology from a basis
— the proof that a collection of open sets is a basis generating a given topology

L4 Continuous Functions
— continuous function
— the closed set characterization of continuous function
— characterization of continuous function using basic open sets
— subspace topology
— equivalence between the € — ¢ definition of continuity and the open set definition of continuity
for f:R—R

L5 Homeomorphism
— basis for subspace topology
— homeomorphism
— homeomorphic spaces
Hausdorff spaces
— the proof that Hausdorffness is preserved by homeomorphism
the proof that Rs. and R are not homeomorphic

e L6 Introduction to Compactness
— the analogy between compactness and finiteness
— open cover



finite subcover

compactness

closed set characterization of compactness

the continuous image of a compact space is compact
locally compact

metric space

e L7 Hausdorff Space, Compact Set, Closed Set and Homeomorphism

proof that a compact subset of a Hausdorff space is closed

proof that a closed subset of X in a compact subspace D of X is compact

a continuous injection whose domain is compact and whose codomain is Hausdorff is a homeo-
morphism onto its image

the union of two compact subsets is compact

the intersection of an arbitrary collection of compact subsets of a Hausdorff space is compact

e L8 Compact Sets in Metric Spaces

[a,b] is closed in R

proof that a compact subset in a metric space is closed and bounded

proof that A is compact in R if and only if A is closed and bounded in R

If A is compact in metric space X, then any sequence in A has a subsequence converging to a
point in A.

real-valued continuous functions defined on compact domains attains max/min

be aware of the Lebesgue’s Lemma

e L9 One-Point Compactification

one-point compactification of a Hausdorff space

proof that the compactified space indeed is a compact topological space

proof that the space before compactification is indeed a subspace of the compactified space
the one-point compactification of a locally compact Hausdorff space is Hausdorff

examples of one-point compactification

e 110 Product Topological Spaces

— In X xY, why don’t we just define an open set as the product of an open set in X and an open
set in Y7

basis for product topology

proof of the tube lemma

the product of two compact spaces is compact

application: a subset of R™ is compact if and only if it’s closed and bounded

e [11 Connected Topological Spaces

limit point

closure

a set being closed is equivalent to the set being equal to its closure

connected

equivalent definitions

separation

the continuous image of a connected set is connected

if some connected sets have nonempty intersection, then their union is also connected
examples

e [.12 Connectedness as a Topological Invariant

the proof that the product of two connected spaces is connected
so all Euclidean spaces are connected B
If A is a connected subspace of X and A C B C A, then B is also connected



lots of examples

the proof that R and R? are not homeomorphic
the intermediate value theorem

the one-dimensional Brouwer fixed-point theorem

e [13 Path-Connectedness

path

the pasting lemma

the join of two paths

path-connected

proof that if a space is path-connected, then it’s connected

but the converse is incorrect (the topologist’s sine curve is a counterexample)
proof that a connected open subset of a Euclidean space is path-connected
the union of two intersecting path-connected spaces is path-connected

the continuous image of a path-connected space is path-connected

the product of two path-connected spaces is path-connected

e L14 Quotient/Identification Spaces

the definition of quotient topology on Y from a surjective map f : X — Y where X is a space
and Y is a set

the continuity of the above map after the quotient topology on Y is defined

the convenient way of proving a map from a quotient space is continuous

e L15 Maps out of Quotient Spaces

the Main Theorem and its proof

the proof that the Mobius strip defined by gluing two opposite edges of a rectangle is homeo-
morphic to the usual picture of a Mébius strip in R?

the proof that a closed interval with its two end points identified is homeomorphic to a cirlce
the three ways of defining RP™

the proof that they are homeomorphic

e LL16 More about the Real Projective Spaces

— Mobius strip can also be obtained by gluing each pair of antipodal points on one boundary
circle of an annulus

proof that the real projective plane can also be obtained by gluing a closed disc and a M&bius
strip along their boundary circles

embedding

proof that RP? embeds in R*

be aware that RP? does not embed in R?

e L17 Topological Groups

— topological group

examples

isomorphism between topological group

topological subgroup

left and right translation as homeomorphisms

connected component

connected component is closed

if a connected set intersects with a connected component, then it is contained in that connected
component

e L18 Matrix Groups

the connected component of a topological group containing the identity is a closed normal
subgroup



Math 455 Topology, Spring 2017
Practice Exam 1
March 3

You are not allowed to use books, notes or calculators. You must explain your answers com-
pletely and clearly to get full credit.

Name:




1. (10 points) For the following problems, just write T or F.

(a) (2 points) If f: X — Y is continuous and X is connected, then Y is also connected.

(b) (2 points) R3\{(0,0,0)} is both connected and path-connected.

(¢) (2 points) The one-point compactification of R is homeomorphic to S*.

(d) (2 points) If f: X — Y is continuous and X is Hausdorff, then Y is also Hausdorff.

(e) (2 points) If Cy and Cy are compact subsets of X, then C; U Cy is also compact.



2. (10 points)

(a) (5 points) Use definition to prove that the subspace {0} U{1/n|n =1,2,3,---} of R
is compact.

(b) (5 points) Prove that the one-point compactification Y of a Hausdorff space X indeed
is compact.



3. (10 points) Prove that if X is path-connected, then it is connected.



4. (10 points) Prove that RP!, defined as the quotient space obtained from S! by identifying
each pair of antipodal points, is homeomorphic to S!. State precisely the theorem(s) you
use.



5. (10 points)

(a) (5 points) Prove that under matrix multiplication, GL(2), the space of all 2 by 2
invertible real matrices, is a topological group.

(b) (5 points) Let = be an element in the topological group G. Prove that f: G — G
defined by f(g) = zgx~! is an isomorphism between topological groups.



Math 455 Topology, Spring 2017
Practice Exam 1
March 3

You are not allowed to use books, notes or calculators. You must explain your answers com-
pletely and clearly to get full credit.

Name:




1. (10 points) For the following problems, just write T or F.

(a) (2 points) If f : X — Y is continuous and X is connected, then Y is also connected.

—

(b) (2 points) R3\{(0,0,0)} is both connected and path-connected.

-

(c) (2 points) The one-point compactification of R is homeomorphic to S*.

-

(d) (2 points) If f : X — Y is continuous and X is Hausdorff, then Y is also Hausdorff.

F

(e) (2 points) If C; and C; are compact subsets of X, then C; U C is also compact.

T



2. (10 points)

(a) (5 points) Use definition to prove that the subspace {0} U{l/n|n =1,2,3,---} of R
is compact. ST o 7 3ol
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3. (10 points) Prove that if X is path-connected, then it is connected.
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4. (10 points) Prove that RP', defined as the quotient space obtained from S* by identifying
each pair of antipodal points, is homeomorphic to S*. State precisely the theorem(s) you
use.
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5. (10 points)

(a) (5 points) Prove that under matrix multiplication, GL(2), the space of all 2 by 2
invertible real matrices, is a torological roup.
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(b) (5 points) Let z be an element in the topological gtoup G. Prove that f : G — G
defined by f(g) = zgz™! is an isomorphism between topological groups.
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Problems for Lesson 19: Homotopy: Motivation

February 24, 2017

Problem (2) will be graded.

(1) Prove that being homotopic relative to a subset A C X is an equivalence relation on
the set of all maps f: X — Y agreeing on A.

(2) Suppose the map f : S — S! is NOT homotopic to the identify map id : ST — S*.
Show that f(z) = —x for some z € S'.

(3) Prove that the map f : S* — S* sending x — —x is homotopic to the identity map
id : St — St



MATH 455 Quiz #5 Name:

1. (2 points) Complete the definition: A topological group G is a space with a group
structure on it such that

2. (2 points) Let f,g: X — Y be continuous functions. f is homotopic to g if

For the next three problems, just write T or F. You don’t have to explain.

2. (2 points) True or False? RP? can also be obtained by gluing a Mobius trip and the
closed unit disk in R? along their boundary circles.

3. (2 points) True or False? A connected component of a topological group G is a closed
normal subgroup of G.

4. (2 points) True or False? GL(5) is a topological group.
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Problems for Lesson 20: The Fundamental Group

February 27, 2017

Problem (2) will be graded.

(1)

e Let f: X — Y be a continuous function, xy € X and yo = f(z). Define
fo i m(X,x0) = (Y, 90) by fu({a)) = (f o ). Prove that f, is a well-defined
group homomorphism. (We say f, is the group homomorphism induced from
the continuous function f.)

e if id : X — X is the identify function and zy € X, then id, : m (X, z9) —
(X, o) is the identity function on (X, xo).

eIf f: X —>Y and ¢g:Y — Z are continuous functions, zo € X, yo = f(zo) and
20 = g(Yo), then f, : m (X, x0) = mi (Y, 90) and g. : m1 (Y, y0) = m(Z, 20) satisty
(go fle=gso fu

Remark. Rendered in modern language, the above says that the fundamental group
construction is a functor from the category of based topological spaces and continu-
ous functions to the category of groups and group homomorphisms. This is just one
example of such functors. We will see another after the spring vacation. Algebraic
topology is a subject in mathematics, which studies such functors from some topo-
logical category to some algebraic category (and hence the name).

Hint: The textbook has a discussion. But that’s incomplete. You need to supply
all the details.

Prove that if f: X — Y is a homeomorphism, then f, : m (X, z¢) — m (Y, f(z0)) is
a group isomorphism.

Remark. This means if you can show that the fundamental groups of two spaces
are not isomorphic, then the two spaces are not homeomorphic. This is the power
of algebraic topology. But the power is limited: there is no reason to believe that
the converse statement is also true. You will see that the spaces in the shapes of the
english letters A, O and P have the same fundamental group, but it’s not difficult to
see that they are pairwise non-homeomorphic.
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Problems for Lesson 21: Computations: the
Path /Homotopy-Lifting Lemmas

March 1, 2017

Problem (2) will be graded.

(1)

(2)

(3)

(4)

In class, we sketched the proof of m(S') = Z. Read Page 97-98 for details. Even
though this is more like a project than a homework problem, I still encourage you to
recover the proof on your own. It uses several important ideas.

In class, we proved that m; of a connected topological group is abelian. Though the
proof is interesting, it is rather ad hoc. This problem invites you to prove the state-
ment again using the Eckmann-Hilton argument, which can also be applied to many
other problems in mathematics.

Let a, 3,7 and § be four loops in the topological group (G, ®, 1) based at 1, where
© is the group operation. Then it is a fact (which you can check on your own) that

(@@ p) - (YO =(a-7)O(B-9),
where a®f and similar terms denote pointwise group multilication, i.e., a®f : [ — G
is defined by (o ® 8)(s) = a(s) ® 5(s).

Prove that 71 (G, 1) is abelian. Notice that if e; denotes the constant path at 1 € G,
then (a) - (8) = (e1 ©® a) - (B ® e1) and similar identity also hold.

Who is this mathematician (picture on the left)? What is the title of his Ph.D. thesis
in its original language?

- /

Who is this mathematician (picture on the right: second person from right, taken
from the movie The Imitation Game 2014)7 What is the title of his Ph.D. thesis in
its original language? Hint: He broke codes with Alan Turing during WWII.
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Problems for Lesson 22: Computations: Unions and Products

March 2, 2017

Problem (1) will be graded.

(1) e Prove again the following theorem: Let X = U UV where U and V are simply-
connected and U NV is nonempty and path-connected. Furthermore, we assume
that U and V' are open. Then X is simply-connected.

e Let X be obtained by gluing disjoint spaces S? x S® and S? x S? at a single
point. Compute m1(X). State all theorems you used.

(2) Let X be a path-connected space and xg,x; € X. Prove that every pair of paths
~v1 and 7y, from zy to x; induce the same isomorphism on the fundamental groups
m (X, o) — m (X, x1) if and only if m (X, zg) is abelian. (This problem serves as a
review of concepts from Lesson 20.)



Math 455 Topology, Spring 2017
Exam 1
March 3

You are not allowed to use books, notes or calculators. You must explain your answers com-
pletely and clearly to get full credit.

Name:




1. (10 points) For the following problems, just write T or F.

(a) (2 points) If f: X — Y is continuous and X is compact, then Y is also compact.

(b) (2 points) S? is both connected and path-connected.

(c) (2 points) RP! is homeomorphic to S*.

(d) (2 points) If f : X — Y is a homeomorphism and Y is Hausdorff, then X is also
Hausdorft.

(e) (2 points) If C;, i € I are compact subsets of X, then U;c;C; is also compact.



2. (10 points)

(a) (5 points) Use definition to prove that the subspace {0} U{1/n|n =1,2,3,---} of R
is compact.

(b) (5 points) Prove that the one-point compactification Y of a Hausdorff space X indeed
is compact.



3. (10 points)

(a) (7 points) Prove that if X is path-connected, then it is connected.

(b) (3 points) Give an example of a space which is connected but not path connected.



4. (10 points) Prove that [0,1]/{0, 1} is homeomorphic to S'. State precisely the theorem(s)
you use.



5. (10 points)

(a) (5 points) Prove that under matrix multiplication, GL(2), the space of all 2 by 2
invertible real matrices, is a topological group.

(b) (5 points) Prove that (R,+,0) and (R, -, 1) are isomorphic as topological groups.
Assume you have proved that they are topological groups. You only need to prove
the isomorphic part.



MATH 455 Quiz #6 Name:

Let the function ® : Z — (S, 1) be defined by ®(n) = (7 o~,) where 7 : R — S! is the
projection function given by m(s) = €™ and 7, : [0,1] — R, s — ns is the uniform-speed
path joining 0 and n in R . We proved (sketched the proof) that & is actually an isomorphism.

1. (2 points) In which of the following steps is the Homotopy-Lifting Lemma used?
(a) @ is a group homomorphism.
(b) ® is onto.

(c¢) ® is one-to-one.

2. (2 points) In which (could be more than one) of the following steps is the Path-Lifting
Lemma used?

(a) @ is a group homomorphism.
(b) ® is onto.

(c) ® is one-to-one.

3. (2 points) True or False? S™ is simply-connected for all n = 0,1,2,3,4,5,---.

4. (2 points) True or False? The fundamental group of the torus is isomorphic to Z x Z.

5. (2 points) True or False? (It’s a fact that the fundamental group of the Klein bottle
is not abelian.) Then it must be true that the Klein bottle is NOT a topological

group.
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Problems for Lesson 23: A for Amherst, Deformation Retraction,
Homotopy Equivalence and Contractibility

March 6, 2017

Problem (2) will be graded.

(1) Prove that being homotopy equivalent ~ is an equivalence relation. It’s in the text-
book.

(2) (a) Prove that the two-dimensional thick letter A on the Euclidean plane deforma-
tion retracts to each of the one-dimensional letters D, O, P, Q, and R, respectively.
Write all the details for the letter D by imitating what we did for A in class. For
the others, only draw the deformation retraction pictures.

(b) Prove that A;D,O,P,Q, and R are pairwise homotopy equivalent.

Comment: So you probably don’t want to think of the alphabet as homotopy
equivalence classes when you compose an English essay.)

(3) Check the details for the comb space example. The comb space is contractible but it
does not deformation retracts to the point on the upper left corner. (Figure 5.10 in
the textbook)

(4) Figure 5.12 in the textbook shows the famous “house with two rooms”. Imagine
how you can get it from a solid cylinder by deformation retraction. On the other
hand, the solid cylinder obviously deformation retracts to a point. Since deformation
retractions are homotopy equivalences. By the transitivity of ~, we know this avant-
garde room is homotopy equivalent to a point and thus is contractible by definition.

(5) Assuming Problem 27, try to see if you can show that the “dunce hat” (Figure 5.11
in the textbook) is contractible.
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Problems for Lesson 24: The Effect of Homotopy on f, and thus on
Homotopy Equivalent Spaces

March 8, 2017

Problem (2) will be graded.

(1) Consider the following examples of a circle A embedded in the space X.

(a) X =R*\{(0,0)}, A is the embedded standard circle S*;

(b) X is a circular cylinder, A is one of its boundary circles;

(c) X =T?% A={(x,x) € St x S'};

(d) X is a Mobius trip, A is the boundary circle;

In each case, describe the generators of the fundamental groups for A and X. Also
describe the image in 7 (X) of a generator of m(A) under the homomorphism in-
duced from the inclusion.

(2) Now you are ready to rigorously prove the following intuitively obvious fact. Let
a:I— X and §: I — X be two paths in the space X = R?\{(0,0)} defined by

a(s) = (cos(ms),sin(ms)) and B(s) = (cos(ws), — sin(ws)).
Prove that o % (3 rel {0, 1}. Justify all your claims. ((1a) is helpful.)

(3) Compute the fundamental group of a torus with one point removed (one puncture).
(4) Compute the fundamental group of the torus with two disjoint closed discs removed.

(5) Compute the fundamental group of the real projective plane with one puncture.
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Problems for Lesson 25: The Brouwer Fixed-Point Theorem

March 9, 2017

Problem (1) will be graded.

(1) (a) State and prove the Brouwer Fixed-Point Theorem again.
(b) Construct a continuous map from the open unit disk on R? to itself such that it
does not have a fixed point.

(2) If every continuous map from X to itself (called a self-map of X) has a fixed point
and Y is homotopy equivalent to X, is it true that every self-map of Y also has a
fixed point?

(3) (a) Prove that if A is a retract of X, then if every self-map of X has a fixed point,
then every self-map of Y also has a fixed-point.
(b) Prove that every self map of the House With Two Rooms has a fixed point.

(4) Whose Ph.D. defense ceremony is this? Hint: He also established the mathematical
philosophy of intuitionism.
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Problems for Lesson 26: Another Application of “Retraction
Induces Epimorphism”: Surfaces, their Interiors and their
Boundaries

March 10, 2017

Problem (2) will be graded.

1) Now you can show that the Mobius strip and the cylinder are not homeomorphic,
y y
even though both deformation retracts to S' (and thus are homotopy equivalent).

Hint: This is Corollary 5.25 of Theorem 5.24, which follows from the Theorem we
proved in class.

(2) We proved in Lesson 12 that R and R? are not homeomorphic using the fact that
connectedness is a topological invariant. We also mentioned in Problem (5) of Lesson
12 the failure of this method in showing that R? is not homeomorphic to R3. Now
you are ready to prove this fact: use an argument in the proof of the last theorem
today to show that R? is not homeomorphic to R*. Hint: understand the proof the
theorem in class thoroughly.

Also enjoy the Spring Vocation thoroughly! =)



MATH 455 Quiz #7 Name:

—_

. (2 points) True or False? R?\{(0,0)} deformation retracts to S*.

[\]

. (2 points) True or False? There is a retraction from S! to the point (1,0) € S*.

w

. (2 points) True or False? The space R?\{p, q}, where p # ¢ € R? and the space in
the shape of the number 8 have isomorphic fundamental groups.

4. (2 points) True or False? Any continuous function from [0, 1] to [0, 1] has a fixed
point.

5. (2 points) True or False? Mdébius strip and cylinder are not homeomorphic.
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Problems for Lesson 27: Simplex, Complex, Polyhedron and
Triangulation

March 20, 2017

Problem (2) will be graded.

(1) A standard n-simplex A" is defined by
A" = {(xy, 29, ,Tpy1) € R"+1|xi >0 forall i,xy + 29+ -+ + 2y = 1}.
Another set of standard simplices I'"™ is defined by I'® = R? and for n > 1,
I o= {(y g2, ) ERMOS yy Syp <o <y, < 1)

(a) Sketch A™ for n =0,1,2 and I'™ for n = 0, 1,2, 3 and then compare them.

(b) For each n, find a linear transformation 7' : R"*! — R" mapping A™ homeomor-
phically onto I'".

(2) (a) Find a triangulation of S'. By definition, this means (1) find a simplicial com-
plex K in some R" and (2) find a homeomorphism f : |K| — S'. What is the
minimal number of 0-simplices that you need?

(b) Find another triangulation of S* for which the simplicial complex is NOT iso-
morphic to the one you used in (a).

(c) Find a triangulation of the cylinder
X ={(z,y,2) eR¥|2*+y*=1,-1< 2 < 1}.

(3) Read through Lemma 6.3 on Page 124. It’s a good opportunity to review most of
the point-set topology we learned from Chapter II to IV.

(4) The idea of triangulation is to cut a space into “curved simplices”, which are simpler
building blocks. Simplicies are simple geometric objects, but they are not the only
ones. For example, (hyper-)cubes are also simple enough. Try to build a similar
theory to what we did today but using cubes: define cubes in all dimensions, define
cubical complex, define its polyhedron and then define “cubiculation”. In the older
days, cubes were used in topology as often as simplices. In Jean-Pierre Serre’s work
leading to his 1954 Fields Medal, you can find homology defined using cubes instead
of simplices.
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Problems for Lesson 28: Origami, Cones and Barycentric
Subdivision

March 22, 2017

Problem (2) will be graded.

(1) In class, the first complex in R? triangulating the Mobius strip we saw has 10 trian-
gles. Can you find a triangulation of the M&bius strip using fewer triangles? (For
example, the second we saw in class has fewer triangles.) Hint: Start from the dia-
gram with siz triangles we drew in class and see how many more you need.

(2) (a) Let K be the complex in R? consisting of the standard simplex A? from the home-
work of L27 and all its faces. Draw a picture illustrating the second barycentric
subdivision K2. How many simplicies in total are there in K2?

(b) How many triangles do you need for a triangulation of the torus 72?7 (Answer
is in the book!) Why can’t you just use twelve? Draw a polyhedron | K| for T

in R3.

(3) Read through Lemma 6.4 on Page 126.
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Problems for Lesson 29: The Key Idea: Simplicial Approximation

March 23, 2017

Problem (3) will be graded.

(1)
(2)

(3)

To prepare for tomorrow (Friday)’s lesson, read the Appendix (Page 241 — Page 243).

Check the detail of the last example in class today: Prove that f : |K?| — |L| can be
simplicially approximated using Step 1 of the proof of the Simplicial Approximation
Theorem.

In Lesson 22, we proved that S™ is simply connected for n > 2. Now use the Simpli-
cial Approximation Theorem to give a second proof.

Hint: if you can show that any map o : I — S™ can be deformed so that it misses
at least one point on S™, then stereographic projection tells you that o can actually
be shrunk to a point.

Comment: Do not assume that a map from an interval to S™ is not surjective.
This is not true. See Section 3 of Chapter 2 for the reason.

Use the Simplicial Approximation Theorem to prove that the set of homotopy classes
of maps from one polyhedron to another is always countable. In particular, (with
relative homotopy taken into consideration) it shows that if X has the homotopy
type of a space which is triangulable, then m(X) is a countable group. This puts a
strong restriction on what kind of groups 7; can be.

There is a proof (by M. W. Hirsch) of the Brouwer fixed-point theorem using the
Simplicial Approximation Theorem. You can look it up and read it.
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Problems for Lesson 30: Computing m1: The Edge Group and its
Convenient Presentation

March 24, 2017

Problem (1) will be graded.

(1) (a) Use G(K, L) to compute the fundamental group of the left polyhedron |K|. Find
all the elements of F(K,v).
(b) Use G(K, L) to compute the fundamental group of the right polyhedron |K].
Find the simplest presentation of your group.

(a) (b)

(2) From the computation of G(K, L) and thus of m;(|K|), we see that it has nothing
to do with simplices of dimension > 3. Use this fact to give a third proof of the
statement that 7 (S™) is trivial if n > 2.

Hint: 7 (S™) = m(D") if n > 2, where D" is the solid ball whose boundary is S™.
You can also find the proof in the book.

(3) Read Theorem 6.10 and Theorem 6.12 in the textbook.



MATH 455 Quiz #8 Name:

1. (2 points) True or False? R? is not triangulable. (Recall that a simplicial complex
has finitely many simplices.)

2. (2 points) True or False? R?\{(0,0)} is homotopy equivalent to a space which is
triangulable.

3. (2 points) True or False? For a complex K, | K| is a topological space with its topology
inherited from the Euclidean space it sits in.

4. (2 points) Let X be path-connected and |K| = X. Then 7 (X) & E(K,v).

5. (2 points) What’s the total number of faces of a 2-simplex?
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Problems for Lesson 31: Computing m;: The Seifer-van Kampen
Theorem

March 27, 2017

Problem (1) will be graded.

(1) (a) Use the Seifert-van Kampen Theorem to compute the fundamental group of
RPZ (It’s in the book. But try this on your own at least for the first one hour.)

(b) Use the Seifert-van Kampen Theorem to compute the fundamental group of the
two-holed torus T?#7T72. (Cut it into two equal halves, or cut it into a disk and
the rest. The first is easier than the second. Only write up one for your grader,
but not both. Nonetheless, you should try both on your scratch paper. For the
latter, consult Figure 7.20 in the book.)

(2) Read Theorem 6.13 in the textbook.

(3) Who are these two mathematicians? What are the titles of their Ph.D. dissertations
in their original languages? Hint: The mathematician on the left wrote a classic
textbook with his advisor Lehrbuch der Topologie. Both its original version and its
translation to English are available in our library.
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Problems for Lesson 32: The Classification of Closed Surfaces:
Statement of Result

March 29, 2017

Problem (2) will be graded.

(1) Check the detail that mT? is homeomorphic to S? with m handles added and nRP?
is homeomorphic to S? with n discs removed and then n Mobius strips added.

(2) Explain your answers in detail. Draw pictures if necessary.

(a) In the alternative statement of the classification theorem, what does the Klein
bottle K? correspond to?

(b) In the alternative statement of the classification theorem, what does RP?#T">
correspond to?
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Problems for Lesson 33: Preparation for the proof, I: Triangulation
and Orientation

March 30, 2017

Problem (2) will be graded.

(1) Read the proofs of Lemma 7.3 and Lemma 7.4. (For 7.3, it’s mainly because the
union of two discs along an arc is again a disc.)

(2) Both complexes below triangulate the Klein bottle.

(a) Draw the thickening of the blue simple closed curve in Figure (a). Does that
give a cylinder or a Mdébius strip?

(b) Draw the thickening of the red simple closed curve in Figure (b). Does that give
a cylinder or a Mobius strip?

(@) (b)

(3) https://math.osu.edu/about-us/history/tibor-radé
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Problems for Lesson 34: Preparation for the proof, II: Euler
Characteristics

March 31, 2017

Problem (2) will be graded.

(1) Check the details for the proof of the last theorem we stated in class.

(2) (a) Let K and L be arbitrary simplicial complexes which intersect in the subcom-
plex K N L. Prove that x(KUL) = x(K) + x(L) — x(KNL).

(b) Let v,e and f be the numbers of vertices, edges and faces respectively of a sim-
plicial complex K triangulating a closed surface. Find the number of vertices,
edges and faces of the first barycentric subdivisioin K! of K. What is the rela-
tionship bewteen x(K) and y(K*)?



MATH 455 Quiz #9 Name:

—_

. (2 points) True or False? The Euler characteristic of a connected tree is 1.

[\]

. (2 points) True or False? The thickening of a simple closed curve in a combinatorial
surface always gives a cylinder.

3. (2 points) True or False? 71(T?) = Z x Z, where T? is the torus.

4. (2 points) True or False? m(K?) 2 (a,b|aba™'b = 1), where K? is the Klein bottle.

ot

. (2 points) What’s the Euler characteristic of a simplicial complex which triangulates
a circle?
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Problems for Lesson 35: Proof, I: Surgery tells us that the list is
exhaustive.

April 3, 2017

Problem (2) will be graded.

(1) Using the results we proved in class about Euler characteristics (x(K,,) = x(K) + 2
and x(K,,) = x(K) + 1), find x(mT?) and x(nRP?).

(2) Which two surfaces on the list in the classification theorem do the following two sur-
faces correspond to? (Think of a big cube as the union of 27 smaller cubes like those
you saw in a rubik’s cube. Remove seven cubes, six at the centers of the six faces and
one at the very center of the big cube which you don’t see from the outside. What
you see in (a) is the surface of the remaining solid. (b) is a malicious cat used to be
kept by Klein.)
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Problems for Lesson 36: Proof, II: 7y tells that the surfaces are
different

April 5, 2017

Problem (1) will be graded.

(1) (a) Sketch the polygonal models for the two surfaces of L35 and also compute their
fundamental groups.

(b) Compute the fundamental group of the surface obtained by removing the inte-
riors of r disjoint closed discs from m7T2.

(c) Compute the fundamental group of the surface obtained by removing the inte-
riors of 7 disjoint closed discs from nRP?2.

(d) Prove that the groups (a,blabab™ = 1) and (a,bla?h® = 1) are isomorphic.
(Hint: Both are the fundamental groups of a well-known surface.)

(2) Classify connected and compact surfaces (not necessarily without boundary). This
is outlined in the exercises on Page 170.

(3) One good problem to test your understanding of the tools we learned so far is Prob-
lem 33 on Page 171: identify the two surfaces having boundary with the standard
ones. Hint: The number of caps you need to glue on to get a closed surface, Eu-
ler characteristics and orientability (in terms of orientation on simplicies) would be
helpful.



Exam 2 Study Guide

Exam 2 will take place on Friday, April 14th, in our regular classroom Seeley Mudd 207 during our
regular class time from 11:00 A.M. to 11:50 A.M. It covers the material From Lesson 19 to Lesson L36
(Sections 5.1 to 7.5). You will not be allowed to use notes, books, calculators, etc. All you need are pencils
(pens) and erasers.

The exam will have five problems. Each problem is worth 10 points. Each problem may have several
parts. You may be asked to state a definition, state a theorem, judge whether a statement is true or false, or
prove a statement. If you are asked for a proof, you have to give a logically correct proof written in English
sentences. Scratch work is not considered a proof.

Below is a list of topics from L19 to L36 which you must know for this exam. Exam problems will be
similar to quiz problems, homework problems and anything we did in class. Carefully go through your notes
and homework.

A practice exam has been posted in Moodle. Treat that as a real exam. Find a nice and quiet place
and then try it within the 50-minute time constraint. The solution will also be posted in Moodle so that
you know what I expect from you.

On the day before the exam (Thursday, April 13th), I will answer your questions in an optional evening
review session. SMUD 206 has been reserved from 6:30 to 8:00 P.M. for it.

e [.19: Homotopy: Motivation

concatenation of two paths

— this operation is not associative

— definition of homotopy between two maps

— definition of relative homotopy between two maps

— examples

— concatenation is associative once we consider the relative homotopy classes of maps.
— if f:S* — St is not homotopic to id : S — S!, then f(x) = —x for some z € S*.
— construct a homotopy between f : S! — S! defined by f(z) = —2 and id : S* — S?!

e [.20: The Fundamental Group

— definition of the fundamental group (check well-definedness of the binary operation, associativ-
ity, identity and inverse)

— a path 7 in Y connecting yo and y; induces a group isomorphism v, : m1 (Y, o) — 71 (Y, 1) and
its proof

— f: X — Y induces a homomorphism f, : m1(X,z) = 71 (Y, f(z)) and its proof

— (go f)« = g« o f« and id, = id and their proofs

— 80 a homeomorphism between two spaces induces isomorphism between the two fundamental
groups

e L21: Computations: Path/Homotopy-Lifting Lemmas
— definition of simply-connected space
— the two proofs that the fundamental group of a topological group is simply connected
— so m(S?) must be abelian
— the path-lifting lemma
— the homotopy-lifting lemma
— outline of the proof that m(S!) & Z

e [.22: Computations: Unions and Products
— computation of 71(S?), n > 2 by writing S? as the union of two simply connected open sets
whose intersection is nonempty and path-connected
1



e [.26

proof that 7 (X x Y) 2 m(X) x m(Y)
fundamental group of the torus

: A for Amherst, Deformation Retraction, Homotopy Equivalence and Contractiblity
definition of retraction
definition of deformation retraction
examples
homeomorphism, deformation retraction and homotopy equivalence (the three notations are
more and more general)
homotopy equivalence is an equivalence relation
contractibility
examples
be aware that contractibility implies simple-connectedness but not vice versa
difference between contractibility and deformation retraction to a point

: The Effect of Homotopy on f, and thus on Homotopy Equivalent Spaces
recall that f: X — Y induces a homomorphism f, : m (X, 2) — m (Y, f(x))
given a particular f, describe what f. does to a generator of 7(X,x)
recall that a path v in Y connecting yg and y; induces a group isomorphism ~, : 7 (Y, y0) —
(Y, y1)
if f ~ g, then g, = v, o f. where =, is an isomorphism of the above type
its proof
using (go f)« = g« o fx and id, = id, it follows that homotopy equivalent spaces have isomorphic
fundamental groups
fundamental groups of the Mdbius strip and the cylinder

: The Brouwer Fixed-Point Theorem (inspired by coffee)
Statement of the Brouwer Fixed-Point Theorem for any n
the n = 1 case can be proved by the intermediate value theorem
proof of the Brouwer fixed point theorem when n = 2 (using the fact that retraction induces
surjective homomorphism on fundamental groups)
Brouwer fixed point theorem doesn’t hold for open disks
definition of fixed-point property
fixed-point property is a topological invariant
fixed-point property is not a homotopy invariant
fixed-point property is preserved by retraction

: Another Application of “Retraction Induces Epimorphism”: Surfaces, their Interiors and their

Boundaries

recall the definition of retraction (it’s different from deformation retraction)
retraction reduces surjective homomorphism on fundamental groups
definition of surface

definition of the interior and the boundary of a surface

the proof that the intersection of interior and boundary is empty

the proof that the Mobius trip and the cylinder are not homeomorphic

R2 A?,:a R3

: Simplex, Complex, Polyhedron and Triangulation
why do we study simplicial complexes (and simplicial maps)?
definition of simplex
definition of (simplicial) complex
examples
definition of polyhedron on a simplicial complex
definition of triangulation



definition of isomorphic simplicial complexes

: Origami, Cones and Barycentric Subdivision

various ways of triangulating the MObius strip
triangulation of the Klein bottle

the cone construction

triangulation of the real projective plane
barycentric subdivision

iterated barycentric subdivisiion

: The Key Idea: Simplicial Approximation

the importance of the simplicial approximation theorem

definition of a simplicial map between simplicial complexes

definition of simplicial approximation s to a continuous map f between the polyhedra of two
complexes

s is homotopic to f (and the homotopy fixes vertices etc. by the definition of a simplicial
approximation)

the Simplicial Approximation Theorem

sketch of its proof

the Simplicial Approximation Theorem gives an alternative proof of 71(S?) = {0} if n > 2

: Computing 71, I: the Edge Group and its Convenient Presentation

definition of the edge group E(K,v) for a simplicial complex based at vertex v

its relationship to m (| K1, v)

definition of the convenient presentation G(K, L) where L is a maximal tree in K

how to compute G(K, L)

its relationship to E(K,v) and thus to w1 (| K|, v)

so m1 (| K|,v) only depends on the 0-, 1- and 2- simplices of | K|

thus the fundamental group of S™ is isomorphic to the fundamental group of the associated
solid ball D™ where n > 2, which is the trivial group.

: Computing 71, II: The Seifert-van Kampen Theorem

statement of the Seifert-van Kampen Theorem
applications of it various examples: Klein bottle, torus, projective plane, double-holed torus etc.

: The Classification of Closed Surfaces: Statement of Result

definition of closed surface

what does classification of surface mean?
attaching handles; attaching Mobius strips

the classification theorem

alternative statement of the classification theorem
K? = RP?#RP?

M2#T? = M?#K?, where M is the Mobius strip
so RP?#T? =~ RP2#K?

: Preparation for the Proof, I: Triangulation and Orientation

Rad’o’s result that any closed surface can be triangulated

the sketch of the above proof

definition of orientable surface

orientation of a 2-simplex and the induced orientation on its edges
compatible orientation

definition of orientable combinatorial surface

the former orientability implies the second orientability

definition of thickening



thickening of a tree gives a disc
thickening of a simple closed curve gives either a cylinder or a Mobius strip

: Preparation for the Proof, II: Euler Characteristics

definition of Euler characteristic of a simplicial complex

examples

Euler characteristic of a (connected) trees

What can you say about the Euler characteristic of a (connected) graph?
maximal tree L on a combinatorial surface and its dual graph I'

the relationship between the thickenings of both L and T’

proof that the Euler characteristic of a closed surface is less than or equal to 2
Any simple closed polygonal curve separates the surfaces x(K) =2 < |K| = S2.
independence of the Euler characteristic with respect to barycentric subdivision
X(AU B) = x(A) + x(B) — x(AN B) (used many times in the next section)

: Proof, I: Surgery tells that the list is exhaustive.

the existence of a simply closed polygonal curve on a combinatorial surface (% S?) which does
not separate the surface into two path-components

the two possible types of surgery

Euler characteristics of complexes triangulating circles, disks and unions of disks

the effect of surgery on the Euler characteristic of a surface

reverse the surgery procedure to recover the original surface (if the surface is orientable, the
original surface is obtained by gluing to a sphere (with disks removed) a finite number of handles
(cylinders gluing in the right way); if the surface is nonorientable, the original surface is obtained
by gluing to a sphere (with disks removed) a finite number of M&bius strips, a finite number of
handles and a finite number of cylinders in the other way.)

identify an arbitrary given closed surface with one on the list

: Proof, IT: 7y tells us that the items on the list are different.

polygonal models of closed surfaces

uniqueness of the direct sum operation for surfaces

fundamental groups of all closed surfaces

abelianization of fundamental groups

conclusion of the classification theorem

fundamental groups of compact surfaces (possibly with boundary)



Math 455 Topology, Spring 2017
Practice Exam 2
April 14

You are not allowed to use books, notes or calculators. You must explain your answers com-
pletely and clearly to get full credit.

Name:




1. (10 points) For the following problems, just write T or F.

(a) (2 points) Any path in S! is homotopic to the constant path at 1 € S*. (Notice that
we didn’t say the end points of the path are fixed.)

(b) (2 points) Let |K| = S2. Then |CK| = D? where D? is the unit closed disk in R3.

(¢) (2 points) The Mébius strip and the the cylinder are homotopy equivalent.

(d) (2 points) The Euler characteristic of RP?*#RP?#RP? is —1.

(e) (2 points) The two groups (a,b

a*b* = 1) and (a,b|abab~' = 1) are isomorphic.



2. (10 points)

(a) (7 points) Prove that there is a homotopy from the map f : S — S! defined by
f(x) = —x to the identity map id : ST — S*.

(b) (3 points) Compute the fundamental group of S' x S2.



3. (10 points)

(a) (3 points) Prove that if A is a retraction of X, then if X has the fixed-point property,
then so does A.

(b) (2 points) Prove that if  : X — A is a retraction, then the group homomorphism
re : m(X) — m(A) is surjective.

(c) (5 points) Let D? be the closed unit disk on R?. Prove that any map f : D? — D?
has a fixed point.



4. (10 points)

(a) (5 points) Let K = 9A3. This means K consists of those simplicies of A* which are
of dimension < 3. Compute y(K).

(b) (5 points) Use G(K, L) to compute the fundamental group of the polyhedron |K|
shown below.




5. (10 points) Two closed surfaces S; and S, are shown below.
e (3 points) Identify each of the two surfaces with a standard surface on the list of the
classification theorem. (Both are the surfaces you saw in the homework.)
e (3 points) Sketch their polygonal models.

e (4 points) Compute their fundamental groups.




Math 455 Topology, Spring 2017
Practice Exam 2
April 14

You are not allowed to use books, notes or calculators. You must explain your answers com-
pletely and clearly to get full credit.

Name:




1. (10 points) For the following problems, just write T or F.

(a) (2 points) Any path in S is homotopic to the constant path at 1 € S*. (Notice that
we didn’t say the end points of the path are fixed.)
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(b) (2 points) Let |K| = S%. Then |CK| = D3 where D? is the unit closed disk in R3.

(c) (2 points) The Mobius strip and the the cylinder are homotopy equivalent.

(d) (2 points) The Euler characteristic of RP?#RP?#RP? is —1.

[

(e) (2 points) The two groups (a, b|a’s? = 1) and (a, blabab~! = 1) are isomorphic.
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4. (10 points)

(a) (5 points) Let K = OA3. This means K consists of those simplicies of A® which are
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5. (10 points) Two closed surfaces S; and S, are shown below.

e (3 points) Identify each of the two surfaces with a standard surface on the list of the
classification theorem. (Both are the surfaces you saw in the homework.)

e (3 points) Sketch their polygonal models.

e (4 points) Compute their fundamental groups.
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Problems for Lesson 37: Homology: Intuitive Ideas and
Introductory Examples

April 6, 2017

Problem (1) will be graded.

(1)

(2)

We mentioned four mathematicians’ names in class today. They are Enrico Betti,
Emmy Noether, Henri Poincaré and René Thom. Write a short passage about an
aspect of the life or the work of one of them which interests you.

Do you remember Pavel Alexandrov, the mathematician who invented one-point com-
pactification? (You can find a picture of him in L9.) According to him (Wikipedia),
Emmy Noether attended lectures given by Heinz Hopf and by him in the summers of
1926 and 1927, where she continually made observations which were often deep and
subtle and when she first became acquainted with a systematic construction of com-
binatorial topology (an older name for algebraic topology), she immediately observed
that it would be worthwhile to study directly the groups of algebraic complexes and
cycles of a given polyhedron and the subgroup of the cycle group consisting of cycles
homologous to zero; instead of the usual definition of Betti numbers, she suggested
immediately defining the Betti group as the complementary (quotient) group of the
group of all cycles by the subgroup of cycles homologous to zero. This observation
now seems self-evident. But in those years (1925 — 28) this was a completely new
point of view.

Emmy Noether was described by Albert Einstein et. al. as the most important
woman in the history of mathematics. In her late days, She was a professor at Bryn
Mawr College. After she passed away, her remains were placed near the M. Carey
Thomas Library at Bryn Mawr.
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Problems for Lesson 38: Homology: Definition and First
Computations

April 7, 2017

Problem (1) will be graded.

(1) (a) Let K be the complex triangulating S* which has four vertices. Compute H;(K),
i=0,1,2, -

(b) Let K be the complex triangulating S? which consists of all proper faces (faces
of dimension < 3) of A3, Compute H;(K), i =0,1,2,3---

(2) Check again that 9? = 0.



MATH 455 Quiz #10 Name:

A closed surface is shown below.

(1) (3 points) Identify the surface with a standard surface on the list of the classification
theorem.

(2) (3 points) Sketch its polygonal model.

(3) (4 points) Compute its fundamental group. (just write the answer)
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Problems for Lesson 39: Homology of Cones and thus of Spheres

April 10, 2017

Problem (1) will be graded.

(1)

(2)

(a) From what we proved in class, because A? = CA!, we then have Hy(A?) = Z
and H;(A?) =0 for all i > 1. Prove the same result (compute H;(A?) for i > 0)
using definition of homology instead.

(b) Let K be an arbitrary simplicial complex and C'K the cone over it with apex
v. For the group homomorphism d : C,,(CK) — C,,11(CK), n > 0, defined on
generators o = (vg, V1, ,U,) by

— <U7U07U17"'7Un) 1f0'€.[<7
(o) = { 0 if o € CK\K,

prove that

dd(c) =0 —do(o),
(which we used in class to show that all homology groups of degree > 0 of a cone
are trivial.)

Hopefully you have checked 9> = 0 again (on your own). Recall that this is the
reason we can define homology groups. Below is a quote on the first page of the clas-
sic Sergei 1. Gelfand, Yuri I. Manin, Methods of Homological Algebra, Springer,
Berlin and Heidelberg, 1997, 2003. Manin is my Ph.D. advisor Ralph M. Kaufmann’s
Ph.D. advisor at University of Bonn.

. utinam intelligere possim rationacinationes pulcherrimas quae e propositione

concisa DE QUADRATUM NIHILO EXAEQUARI fluunt.

(... if T could only understand the beautiful consequence following from the concise
proposition d* = (.)

From Henri Cartan Laudatio on receiving the degree of Doctor Honoris Causa,
Oxford University, 1980.

In fact, you saw d? = 0 even when you were a freshmen or sophomore (or high school
student). In MATH 211, you probably learned gradient, curl and divergence, which
are three differential operations. (Let d be each of them.) Show that

curl o grad = 0

and
div o curl = 0.

These are two theorems in Stewart.
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Problems for Lesson 40: Homology of Surfaces

April 12, 2017

Problem (2) will be graded.

(1) Convince yourself that Ho(K) = Z if K is an orientable combinatorial closed surface
while Hy(K) = 0 is K is a non-orientable combinatorial closed surface.

(2) Let K,,, be a complex whose polyhedron is obtained by removing the interior of
r > 1 disjoint closed discs from mT?. Let L,, be a complex whose polyhedron is
obtained by removing the interior of » > 1 disjoint closed discs from nRP?. Compute
H;(K,,,) and H;(L,,) for all i =0,1,2,---

Comment: Problem (1)(b,c) from L36 is useful.
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Problems for Lesson 41: Chain Maps between Chain Complexes
April 13, 2017

Problem (1) will be graded.

(1) Let K and L be complexes and s : |K| — |L| a simplicial map. (Simplicial map
was introduced in L29.) Recall that s is determined by what it does on vertices.
The rest is linear extension on each higher dimensional simplex. Now we construct
homomorphism s,, : C,,(K) — C,(L), n = 0,1,2,--- by specifying what it does on
generators as follows.

Let 0 = (vg, vy, vz -+ ,v,) € Cp(K). Then

_ { (s(vo), s(v1), s(ve), -+, s(v,)) if all s(vg), s(v1),s(ve) -+, s(vy,) are distinct;
0 if for some @ # j, s(v;) = s(v;).

Show that these s,, form a chain map. (So from what we did in class, it follows that
s, induces a homomorphism from H,(K) to H,(L).)

Hint: The solution can be found from Page 184 to 185 in the textbook. But surely,
at least try it on your own first.



Math 455 Topology, Spring 2017
Exam 2
April 14

You are not allowed to use books, notes or calculators. You must explain your answers com-
pletely and clearly to get full credit.

Name:




1. (10 points) For the following problems, just write T or F.

(a) (2 points) Let A be a retraction of X. Then if X has the fixed-point property, then
so does A.

(b) (2 points) Let |K| = S'. Then |CK| = D? where D? is the unit closed disk in R?.

(c) (2 points) We need at least 10 triangles to find a triangulation of the Mobius strip
in R3.

(d) (2 points) The Euler characteristic of T?#T?#T? is —4.

(e) (2 points) The two groups (a,b

a*b* = 1) and (a,b|aba~'b~! = 1) are isomorphic.



2. (10 points)

(a) (7 points) Prove that if the map f : S* — S! is not homotopic to the identity map
id : S' — S, then there is x € S* such that f(z) = —z.

(b) (3 points) Compute the fundamental group of S* x S' x S



3. (10 points)

(a) (2 points) Let A be a subspace of X and r: X — A a map. What does it mean to
say r is a retraction from X to A?

(b) (3 points) Prove that if r : X — A is a retraction, then the group homomorphism
re : m(X) — m(A) is surjective.

(c) (5 points) Let D? be the closed unit disk on R?. Prove that any map f : D? — D?
has a fixed point.



4. (10 points)

(a) (5 points) Let K = 9A*. This means K consists of those simplicies of A* which are
of dimension < 4. Compute y(K).

(b) (5 points) Use G(K, L) to compute the fundamental group of the polyhedron |K|
shown below.




5. (10 points) Two closed surfaces S; and S, are shown below.
e (3 points) Identify each of the two surfaces with a standard surface on the list of the
classification theorem.
e (3 points) Sketch their polygonal models.

e (4 points) Compute their fundamental groups.



MATH 455 Quiz #11 Name:

(1) (2 points) True or False? Let K be a complex and CK the cone over K. Then
Hy(CK) = Z and Hy(CK) 20 for all i > 0.

(2) (2 points) Ture or False? For any n > 1, H,(0A™™) = Z.

(3) (2 points) True or False? For a complex K triangulating S?%, By(K) = 0.

(4) (2 points) True or False? If | K| has three path components, then Hy(K) = Z X Z X Z.

(5) (2 points) Ture or False? A chain map ¢e : Co(K) — Co(L) is defined to be any
sequence of group homomorphisms ¢, : C,,(K) — C,(L).
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Problems for Lesson 42: Homotopy Invariance of Homology, I:
Barycentric Subdivision is a sequence of Stellar Subdivisions

April 17, 2017

Problem (1) will be graded.

(1) Let K be a simplicial complex and A a simplex in K. Let K’ be the simplicial complex
obtained from K by stellar-subdivision with respect to A. Let x : C,,(K) — C,(K")
be the subdivision chain map. Verify that if o = (vg, v1,v9,v3,v4) is an oriented
simplex in K and vy, vy, vo are the vertices of A, then 0o x(o) = x 0 d(0).

(2) Prove that x, o0, = idy, k) for all n.

Hint: See Page 188.
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Problems for Lesson 43: Homotopy Invariance of Homology, II:
Sketch of Proof and Applications

April 19, 2017

Problem (1) will be graded.

(1) Prove the General Brouwer Fixed-Point theorem: for any n > 1, show that any
map from the n-dimensional closed unit disk D" to itself has a fixed point.

(2) Suppose s,t : |K| — |L| are simplicial maps and assume that there are homomor-
phisms d,, : C,(K) — C41(L) for each n such that

dod+0dod=t—s:CyK)— C,(L).

Prove that s and t induce the same homomorphisms on homology groups. These d,,
are collectively called a chain homotopy between s and ¢, which is used in the proof
of the homotopy invariance of homology groups.

(3) Recall the definitions of orientability for a closed surface and a combinatorial surface,
respectively. We showed that the former implies the latter in L33. Read Theorem
8.15 on Page 191 for the reverse implication. It uses the homotopy invariance of Hj.
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Problems for Lesson 44: Applications of Homology, I: Degree of
Maps of Spheres and the Hairy Ball Theorem

April 20, 2017

Problem (1) will be graded.

(1) In this problem, we prove that S™ admits a continuous nonvanishing vector field if
and only if n is odd. We do it in two steps.

(a) Prove that if S™ admits a continuous nonvanishing vector field, then n must be
odd. (Hint: This was proved in class. You just need to understand it and then
reproduce it here.)

(b) If n is odd, construct a continuous nonvanishing vector field on S™. (Hint: It’s
in the textbook.)

(2) Prove that if the degree of f :S™ — S™is not 1, then f must map some point to its
antipode.

(3) If f : S™ — S™ is a map, and if n is even, show that f2 := f o f must have a fixed
point. (Hint: Prove that either f has a fixed point, or f sends some point to its
antipode. In both cases, f? has a fixed point.)
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Problems for Lesson 45: Applications of Homology, II: The
Euler-Poincaré Formula

April 21, 2017

Problem (1) will be graded.

(1) Use the Euler-Poincaré Formula to compute the Euler characteristics of the following
spaces.

nRP?
space obtained from mT? by removing the interior of r disjoint closed discs

)
)
)
) space obtained from nRP? by removing the interior of 7 disjoint closed discs
) AlOO

) solid torus whose triangulation has a trillion 3-simplices

(2) Understand the proof of the Euler-Poincaré Formula.



MATH 455 Quiz #12 Name:

(1) (2 points) True or False? Any map from D’ to D® has a fixed point, where D? is the
closed unit ball in R®.

(2) (2 points) Ture or False? Homotopic maps between spaces induce the same homo-
morphism on homology.

(3) (2 points) True or False? S? admits a continuous nowhere vanishing vector field.

(4) (2 points) True or False? If f: S™ — S™ has no fixed-point, then degf = (—1)"*1.

(5) (2 points) Ture or False? The Euler characteristic of D is 2.
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Problems for Lesson 46: Applications of Homology, III: The

Lefschetz Fixed-Point Theorem

April 24, 2017

No problems are to be collected.

(1)

(2)

Let A and B be two n by n matrices of real (complex, rational, or integral) numbers.
Show that tr(AB) = tr(BA).

Prove the Hopf Trace Theorem: if ¢' : C;(K,Q) — C;(K, Q) form a chain map where
K is a complex of dimension n, then

> (=1 = Y (—1)'te(¢)),

i=0 i=0
where ¢! are the induced maps on homology.

Prove that the Euler characteristic of a compact, path-connected, triangulable topo-
logical group must be zero. (In particular, this shows that all even dimensional
spheres (which surely are compact, path-connected and triangulable) are not topo-
logical groups.)

Hint: Show the following.

(a) If the identity map of X is homotopic to a map which does not have a fixed
point, then x(X) = 0.

(b) If G is a path-connected topological group, then left translation L, : G — G
defined by Ly(x) = gz is homotopic to the identity. (Let v : I — G be a path
from g to e. Then H(z,t) = v(t)z is a homotopy from [, to id.)

On the next page is a recommendation letter for John Nash’s graduate school appli-
cation from Prof. Duffin to Prof. Lefschetz. Coincidently, both Lefschetz and Nash
were involved in fixed-point theories. Duffin’s other student Raoul Bott is one of
the greatest topologists, though their joint work was in electrical engineering. Bott’s
students Stephen Smale and Daniel Quillen both got the Fields medal.



CARNEGIE INSTITUTE OF TECHNOLOGY
SCHENLEY PARK
PITTSBURGH 13, PENNSYLVANIA

DEPARTMENT OF MATHEMATICS

COLLEGE OF ENGINEERING AND SCIENCE February 11, 1948

Professor S, Lefschetz
Department of Mathematics
Princeton University
FPrinceton, N, J,

Dear Professor Lefschetz:

This is to recommend Mr, John F, Nash, Jr,
who has applied for entrance to the graduate college
at Princeten,

Mr, Nash is nineteen years old and is
graduating from Carnegie Tech in June, He is a
mathematical genius,

Yours sincerely,

Ridrad \% ”‘?h“\
Richard J, Duffin

RJD:hl
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Problems for Lesson 47: Knots — What should be the correct
definition of equivalence of knots?

April 26, 2017

No problems are to be collected.

(1) Show that the “left-handed” figure 8 knot is equivalent to the “right-handed” figure
8 knot through ambient isotopy to the identity. You are allowed to prove it using
mechanical engineering. An item in the Beginning Topologist’s Toolbox is useful.

(2) Can the left-handed trefoil knot be deformed to the right-handed trefoil knot through
ambient isotopy to the identity? We will answer this on Friday.

(3) Read Section 10.2. Compute the knot groups for several familiar knots. In particular,
compute them for the left- and right- handed trefoils. Are they isomorphic?

(4) Look up Tait’s theory of the periodic table of elements using knots.

(5) Given two knots k; and ks, we can take their connected sum ky#ks. You can google
what that means. If a knot k£ can not be written as a connected sum k;#k, where
neither ki nor &, is the unknot, then we say k is called a prime knot. All the unknot
we saw in class today are prime knots. Any knot table you encounter is also likely a
table of only prime knots. Download such a knot table. Skim through it. Can you
find some knots in it which have cultural meanings?
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Problems for Lesson 48: How do we distinguish the first few knots?
— The Jones Polynomial

April 27, 2017

No problems are to be collected.

(1) Read the Scientific American article Knot Theory and Statistical Mechanics by Vaughan
F. R. Jones himself. It’s posted in Moodle.

(2) Read the fresh article (as fresh as today’s breakfast because it just came out this
morning) about Virtual Knot invented by Louis Kauffman following ideas of Gauss.
It has many connections to classical knot theory (the knot theory we are studying)
and many other areas of mathematics. This article also has a good overview of that
much knot theory we have talked about.

http://www.ams.org/publications/journals/notices /201705 /rnoti-p461.pdf



L44
The End.

Recall: <> 15 on!y nvenent w.r.t Qendzrfulsnr mons of fypc T &I
_o<\:7>--A 219 , wnd <‘/~7>"A <UL >

/
_Dcf-‘ G o kaot, label o dwecnon. At eadn wossing; tht o o
possibhines : K - assign +1 ) N -assign -1, T wnthe Aumber
ot a knot ’C W“‘)‘:absszn'g#)

[ Lebt-heded waborl) = -1 +-1¢-]=-3
D

ompht: Wiy ndpndar of Hhe chown  dirtchen
oo i w 15 Wit pwader R T &L -

P Type I w(BY=1t-1=0=w()

7 Type I : W(‘/)'Hl*l’l“w(/\)
o nolt: fpr R.T monts, wt add/subbact l

41

sex: w(N)-1 =—w(1)=0.

Dee: [K]= (-9 <K
Twm: L1 15 a kot cavenear:
Pe: Both w R <? at 1t wdy R.I %I, so [T 05 mo.
let K=)0, K'= |
Tiw [KT= (-A3) ™<= (-a5) " A%y <y
= (A3 YYD A FATIK Y = (FASY K> = (K]
Sumies bor K=7Q [ '

0c: The Jones Polynomcl of K, (k)= [KT st A= 47"
enon: Hhe  exponars will always ed vp > N4Vs.



CEx: dorus poiynval of C1ght-hended Weéoul 15 -t* 443+t

£%: (> = AD 7+ AXB>  ([(mu 2T
=A(AE@Y+ A D)t A (A7 tAKDY?)  [au 2]
= A7 + 209> AL (-AT-AIK 0> [l 3]
= (1-A™)<0OY + A (ACEY+ A'CR?)  [nlk T ¢a (@]
= (1-A1) Kooy + AT (A(AT-A) + AT") [muw 1]

= (1FA™) (AP ¢ A CODP) - AT [mle 2]
= (1-AM)(A+AT'-A%-AD)) - A% (e 1, 3]
- A—." A—S_Af

w(ch)=1+1¢r1=3

[@&]= A3 (A7-A-AS)
:-A"‘*A’n"A’W

So J(6d) = AL .

Nok : Jones polynomials (et dvaguish sl kaol3, byt 1t's vy uschul.
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Problems for Lesson 49: The End

April 28, 2017

No problems are to be collected.

(1) Compute the Jones polynomial for all the prime knots up to five crossings. Answers
are in the handout.



Final Exam Study Guide

The final exam will take place on Monday, May 8th, in Seeley Mudd 204 from 9:00 A.M. to 11:59
A.M. It covers everything we learned this semester. You will not be allowed to use notes, books, calculators,
etc. All you need are pencils (pens) and erasers.

The exam will have 9 problems. The total number of points is 100. Each problem may have several
parts. You may be asked to state a definition, state a theorem, judge whether a statement is true or false, or
prove a statement. If you are asked for a proof, you have to give a logically correct proof written in English
sentences. Scratch work is not considered a proof.

Exam problems will be similar to quiz problems, homework problems and anything we did in class. Care-
fully go through your notes and homework.

A practice exam has been posted in Moodle. Treat that as a real exam. Find a nice and quiet place
and then try it within the 3-hour time constraint. (You don’t really need that much time.) The solution is
also posted in Moodle so that you know what I expect from you. Compared to the midterms, the final
exam contains more variations and one or two problems you have never seen.

On the Friday (May 5) of the reading period, I will answer your questions in an optional review session.
SMUD 207 has been reserved from 11:00 to 11:59 A.M. for it.

Below is a list of topics from L37 to 1.49 we covered after Exam 2.

e L37: Homology: Intuitive Ideas and Introductory Examples
— Why do we need more algebraic topology?
— Poincaré’s idea of associating a number (Betti) to each dimension ¢ where ¢ is the number of
(i 4+ 1)-dimensional cavities bounded by an i-dimensional closed surface with singularity
— Noether’s idea of associating an abelian group to each dimension 1
— lots of examples

e [.38: Homology: Definition and First Computations
— oriented simplex
— definition of chain groups
— definition of boundary homomorphisms 0
- 9*=0
— definition of the cycle group
— definition of the boundary group
— definition of the homology group
— definition of the Betti numbers
— definition of homologous cycles
— compute the homologies of the boundary of a triangle by hand
— compute the homologies of the boundary of a square by hand
— compute the homologies of the boundary of a tetrahedron by hand

e 1.39: Homology of Cones and thus of Spheres
— compute the homology of the solid triangle by hand
— compute the homologies of the solid tetrahedron by hand
— computation of Hy(K) where K is any complex
— homology of cones and its proof
— homology of spheres from the homology of simplices as cones

e [40: Homology of Surfaces
— computation of Hy(K) where K is path-connected
— computation of H;(K) by abelianizing m (| K|) where K is any complex
1
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sketch the proof of the above
computation of Hy(K) where K is a closed surface
computation of Ho(K) where K is a compact surface with boundary

: Chain Maps between Chain Complexes
definition of chain complex
definition of chain map
prove that chain map induces homomorphism on homology
prove that (¢ o @), = 1), o ¢, where ¥ and ¢ are chain maps
chain map induced from simplicial map

: Homotopy Invariance of Homology, I: Barycentric Subdivision is a sequence of Stellar Subdivi-

sions

definition of stellar subdivision

express a barycentric subdivision as a sequence of stellar subdivisions

(*) stellar subdivision doesn’t change the homology of a complex

so iterated barycentric subdivision doesn’t change the homology of a complex
subdivision chain map x

the standard simplicial map 6

the usage of the above two maps in proving (*)

: Homotopy Invariance of Homology, II: Sketch of Proof and Applications
the three facts about homomorphism on homology induced from map between triangulable
spaces
proof of the homotopy invariance of homology from the above three facts
homologies of S™ for all n > 0
proof that R™ = R" iff m = n.
proof of the general Brouwer fixed-point theorem

: Applications of Homology, I: Degree of Maps of Spheres and the Hairy Ball Theorem
definition of degree of a map from a sphere to itself
properties of degree
degree of the antipodal map
the proof that if f : S™ — S™ doesn’t have a fixed-point, then degf = (—1)"*1
the proof that if f : S™ — S™ is homotopic to the identity and n is even, then f has a fixed
point
definition of vector fields
the hairy ball theorem and its proof
more applications of degrees

: Applications of Homology, II: The Euler-Poincaré Formula
recall the definition of Euler characteristic
The Euler-Poicaré formula and its significance
homology with rational coefficients and its relation to homology with integer coefficients
Proof of the Euler-Poincaré Formula (its essentially a linear algebra problem)
applications

: Applications of Homology, III: The Lefschetz Fixed-Point Theorem
trace of a square matrix
trace of a linear transformation (operator) and why it’s well-defined
definition of Lefschetz number and example of its computation
The Hopf Trace Theorem
The Leftschetz-fixed point theorem and the sketch of its proof
applications of the theorem to balls, real projective planes and spheres etc.
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A path-connected compact triangulable topological group has Euler characteristics 0.

: Knots — What should be the correct definition of equivalence of knots?
definition of knots, links and lots of examples
the problem of defining equivalence of knots using isotopy only
the definition of equivalence of knots using ambient isotopy to the identity
connected sum of knots
the definition of knot group

: How do we distinguish knots? — The Jones Polynomial
the problem with knot group
plane isotopy
Reidemeister moves of type I, IT and III
the bracket polynomial (K) of a knot and its invariance under moves of type II and III
the problem of the bracket polynomial under move of type I

: The End
writhe number and its independence of orientation
definition of Jones polynomial and the proof that it’s a knot invariant
computations of Jones polynomial
so the unknot, the left trefoil, the right trefoil, the figure eight etc. are all distinct knots
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1. (20 points) For the following problems, just write T or F.

(a) (2 points) The left-handed figure-8 knot and the right-handed figure-8 knot are
equivalent through an ambient isotopy to the identity.

(b) (2 points) The left-handed trefoil knot and the unknot are not equivalent through
an ambient isotopy to the identity.

(c) (2 points) There is a continuous nowhere vanishing vector field on S®.

(d) (2 points) If A, B, C' are path-connected, then so is A x B x C.

(e) (2 points) RP? is compact.

(f) (2 points) Any connected space is also path-connected.

(g) (2 points) Let A, B,C, D be spaces. If A~ B and C'~ D, then A x C ~ B x D.

[

(h) (2 points) If K is a four dimensional simplicial complex, then Hs(X) = 0.

(i) (2 points) Both the cylinder and the Mobius strip deformation retract to a circle.

(j) (2 points) The inclusion of S* onto the boundary circle of the Mobius strip M?
induces a homomorphism sending a generator in m;(S?) to + of twice of a generator
in 7y (M?).



2. (10 points) Prove the pasting lemma: Let A and B be closed subsets of the space X
and AUB=X.If f: A— Y and g : B — Y are continuous functions and they agree
over AN B, namely f(z) = g(x) for all z € AN B, then the function h : X — Y defined
by h(z):= f(z)if x € A and h(z) := g(x) if x € B is also a continuous function.



3. (10 points) Prove that if X is a Hausdorff space and A a compact subset of X, then A is
closed in X.



4. (10 points) Prove that [0,1]/{0,1} is homeomorphic to S*.



5. (10 points) Let @ : I — X and 3 : I — X be two paths in the space X = R?\{(0,0)}
defined by
a(s) = (cos(ms),sin(ms)) and B(s) = (cos(ws), — sin(ws)).

Prove that o 2§ rel {0,1}. Justify all your claims.



6. (10 points) State and prove the general Brouwer-fixed point theorem.



7. (10 points) Let X be the path-connected and compact triangulable space RP2.

(a) (4 points) Compute the Euler characteristic y(X).

(b) (6 points) Prove that any map f: X — X has a fixed-point.



8. (10 points) Two closed surfaces S; and S, are shown below.
e (3 points) Identify each of the two surfaces with a standard surface on the list of the
classification theorem. (Both are the surfaces you saw in the homework.)
e (3 points) Sketch their polygonal models.

e (4 points) Compute their fundamental groups.




9. (10 points) X is the space obtained by identifying all the three edges of a solid triangle
(area is filled in) along directions shown below. (X is called the Dunce hat.) Use the
Seifert-van Kampen Theorem to compute the fundamental group of X.
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1. (20 points) For the following problems, just write T or F.

(a) (2 points) The left-handed figure-8 knot and the right-handed figure-8 knot are
equivalent through an ambient isotopy to the identity.

—]

(b) (2 points) The left-handed trefoil knot and the unknot are not equivalent through
an ambient isotopy to the identity.

__l

(c) (2 points) There is a continuous nowhere vanishing vector field on S3.

\%

(d) (2 points) If A, B, C are path-connected, then so is A x B x C.

(e) (2 points) RP? is compact.

~

(f) (2 points) Any connected space is also path-connected.

\T\

(g) (2 points) Let A, B,C, D be spaces. If A~ B and C ~ D, then A x C ~ B x D.

—|

(h) (2 points) If K is a four dimensional simplicial complex, then Hs(X) £ 0.

{

(i) (2 points) Both the cylinder and the Mobius strip deformation retract to a circle.

=

() (2 points) The inclusion of S* onto the boundary circle of the Mébius strip M?
induces a homomorphism sending a generator in m;(S') to & of twice of a generator
in T (M 2) .

\(
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2. (10 points) Prove the pasting lemma: Let A and B be closed subsets of the space X
and AUB=X.If f: A=Y and g: B — Y are continuous functions and they agree
over AN B, namely f(z) = g(z) for all z € AN B, then the function A : X — Y defined
by h(z) := f(z) if z € A and h(z) := g(z) if z € B is also a continuous function.
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3. (10 points) Prove that if X is a Hausdorff space and A a compact subset of X, then A is
closed in X.

This 3 the j%‘of: DjL Thesren | a)C L7.



4. (10 points) Prove that [0,1]/{0,1} is homeomorphic to S?.

Thie s Hl 0f Exam 2



5. (10 points) Let a : I — X and 8 : I — X be two paths in the space X = R?\{(0,0)}
defined by
a(s) = (cos(ws), sin(ws)) and B(s) = (cos(ws), — sin(ws)).

Prove that o %  rel {0,1}. Justify all your claims.

Thr ™ #2 ofthHW 759« LZ(‘Z".



6. (10 points) State and prove the general Brouwer-fixed point theorem.

—Thit ¢ #1 of Hw f L43
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7. (10 points) Let X be the path-connected and compact triangulable space RP2.

(a) (4 points) Compute the Euler characteristic x(X).
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8. (10 points) Two closed surfaces S; and S, are shown below.
e (3 points) Identify each of the two surfaces with a standard surface on the list of the
classification theorem. (Both are the surfaces you saw in the homework.)
e (3 points) Sketch their polygonal models.
e (4 points) Compute their fundamental groups.

S

Thie = Bob #S 0{’ fractie Exam 2.
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9. (10 points) X is the space obtained by identifying all the three edges of a solid triangle
(area is filled in) along directions shown below. (X is called the Dunce hat.) Use the
Seifert-van Kampen Theorem to compute the fundamental group of X.
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1. (20 points) For the following problems, just write T or F.

(a) (2 points) There is an isotopy from the left-handed trefoil knot to the unknot.

(b) (2 points) There is a homeomorphism from R3 to R? which maps a left-handed trefoil
knot to a right-handed trefoil knot.

(c) (2 points) S'?% doesn’t admit a continuous nowhere vanishing vector field.

(d) (2 points) The Euler characteristic of A% is 2.

(e) (2 points) Let A, B, C be closed surfaces. If A% B, then A#C % B#C.

(f) (2 points) Let A, B, C be spaces. If A2 B, then A x C 2 B x C.

(g) (2 points) A space consisting of finitely many points is compact in any topology.

(h) (2 points) A path-connected space is always connected.

(i) (2 points) The product of two connected spaces is always connected.

(j) (2 points) There is a retraction from S* to the point (1,0) € S*.



2. (8 points) Prove this version of the pasting lemma: Let A and B be open subsets of
the space X and AUB=X.If f:A—Y and g: B — Y are continuous functions and
they agree over AN B, namely f(z) = g(z) for all x € AN B, then the function h : X — Y
defined by h(x) := f(x) if z € A and h(x) := g(x) if x € B is also a continuous function.



3. (12 points)

(a) (6 points) Let X be a Hausdorff space and A a compact subset of X. Prove that A
is closed in X.

(b) (6 points) Let X be a Hausdorff space and Y its one-point compactification. Prove
that the original topology 7 on X and the subspace topology 7' which X inherites
from Y are the same.



4. (10 points) Prove that RP!, defined as the quotient space obtained from S! by identifying
each pair of antipodal points, is homeomorphic to S?.



5. (8 points) Let v : I — X and 8 : I — X be two paths in the space X = R?\{(0,0)}
defined by
a(s) = (cos(ms),sin(ms)) and B(s) = (cos(ws), — sin(ws)).
Prove that with the end points fixed, o cannot be deformed continuously to g in X. More
precisely, show that v 2 5 rel {0,1}. Justify all your claims.



6. (7 points) Prove that R™ = R" if and only if m = n.



7. (10 points) Let X be the path-connected and compact triangulable space RP*. Its ho-
mology groups are as follows.

Ho(X) = 7, Hi(X) = 7/27, Hy(X) 2 0, H3(X) = 7/27, Hi(X) = 0,i > 4.

(a) (2 points) Compute the Euler characteristic x(X).

(b) (4 points) Prove that any map f: X — X has a fixed-point.

(c¢) (4 points) Can X be a topological group? (Clearly state any theorem you use and
prove any statement you make.)



8. (15 points) Two closed surfaces S; and S, are shown below.

S,

(a) (3 points) Identify each of the two surfaces with a standard surface on the list of the
classification theorem.

(b) (3 points) Sketch their polygonal models.

(¢) (3 points) Compute their fundamental groups.



(d) (6 points) Let Cy be a compact surface obtained from S by removing the interiors
of 3 disjoint closed discs. Let C5 be a compact surface obtained from S5 by removing
the interiors of 5 disjoint closed discs. Compute all the homology groups of C; and
Cs.



9. (10 points) X is the space obtained by identifying all the five edges of a solid pentagon
(area is filled in) along directions shown below.

(a) (5 points) Use the Seifert-van Kampen Theorem to compute the fundamental group
of X.

(b) (5 points) Is X is contractible? Justify your claim.



