Poisson structures from cornets of field theories
bused on joint work with
P. Miners, N. Rechetikhin
N. Morhoyedi, M. Schiaving, K. Wernti
G. Canepa: focus on $3+1$ gravity in coframe formulation

Field theory on manifolds with boundaries and corners
 nu partition fun state Y
boundary: symplectic manifold M \sim its quantization \mathcal{H}
corners: Poisson mantiould and its quantization A

$$
\begin{aligned}
& \left.\sum_{\text {bounders }} \sim\right) M_{\Sigma} \\
& \frac{\Sigma_{1}}{c} \Sigma_{2} \\
& c
\end{aligned}\left|\mu_{\Sigma_{1} U \varepsilon_{2}}=\mu_{1} x_{p_{c}} \mu_{2}\right|_{\varepsilon_{1} U \varepsilon_{2}}=H_{\varepsilon_{1}} \theta_{A_{c}} H_{\Sigma_{2}}
$$

Part I: Some bucteground \& results
Affine lie alpebras
Let ($g,<,>$) be a fid quadratic lie al debra (ie. $<,>$ invariant inner product)

- $g_{s^{\prime}}:=\operatorname{Map}\left(s^{\prime}, y\right)$ with pointwire Lie bracket

$$
\begin{aligned}
& c(b, g):=\int_{S^{\prime}}\langle b, d g\rangle \text { is a cocycle! } \\
& b, \rho \in g_{s^{\prime}} \\
\Rightarrow \quad & \hat{y}:=g_{s^{\prime}} \oplus \mathbb{R} \text { with }[b \oplus a, g \oplus b]:=[b, \rho] \oplus c(\theta, \rho)
\end{aligned}
$$

ir a Lie algebra

- \hat{y} is called an attive Lie alpebra
- Its repsesentation theory is widely strolied
- If is selated to Chern-Simons thesry and the Wess-2 umino-Witten model
- The Poisgon a leabra in the titte is " \hat{y} "" viz, $\mathcal{F}^{\partial d}:=\Omega^{\prime}\left(S^{\prime}\right) \otimes g^{*}$ with affive Poirson itunctare (defined on certair thactionals, e.g., local ones) - A ssociated to the corners of CS theory

2) Peneralization Let y be a fid Lie alpobra Γ a closed oriented surface
$Y_{\Gamma}:=\operatorname{Map}(\Gamma, g)$ with pointwire Lie bracket
$Y_{\rho}^{*}:=\Omega^{\prime}(\rho) \otimes y^{*} \quad$ with pointwire couljoint action of y on y^{*}
$\tilde{y}_{\Gamma}:=y_{\Gamma} \oplus y_{\Gamma}^{*}$
with Lie bracket

$$
[b \otimes \alpha, \rho \otimes \beta]=[b, \varphi] \oplus\left(\operatorname{ad} \beta \beta-\operatorname{ad} \rho^{*} \alpha\right)
$$

Cocycle: $\quad C(b \in \alpha, g \otimes \beta)=\int_{\Gamma}((\alpha, d g)-(\beta, d b))$
$($,$) canonical pairing of p^{*}$ with y

$$
\begin{aligned}
\Rightarrow & \hat{y}_{\Gamma}:=\tilde{y}_{\Gamma} \oplus \mathbb{R} \text { with } \\
& {[b \oplus \alpha \oplus a, b \oplus \beta \oplus b]:=[b \oplus \alpha, g \oplus \beta \tilde{\beta} \oplus C(b \oplus \alpha, g \oplus \beta)}
\end{aligned}
$$

is a Lie algebra

Generalizations
(1) g-bundle over $\Gamma \sim y_{\varepsilon}, y_{\varepsilon}^{*}$ sections

$$
c(b \oplus \alpha, \rho \oplus \beta)=\int_{\Gamma}\left(\left(\alpha, d_{\mu_{0}} \phi\right)-\left(\beta, d_{f_{0}} f\right)\right)
$$

da o covariant derivative wort. some connection
(2) If (y, c, λ) quadratic

$$
C_{\Lambda}(b \otimes \alpha, \phi \theta \beta):=C(b \otimes \alpha, \phi \theta \beta)+\Lambda \int<\alpha, \beta>
$$

$\sim \hat{y}_{\Gamma}^{\wedge}$

- $\hat{y}_{\Gamma}^{\wedge}$ is relaled to 4D BF theovy (with "copmological" rerm for $\Lambda \neq 0$)
It is worth being ptudied
- For LD BF therry, one has to cuncider the Poingon manifold
and the poippon submanifold

$$
P=\left\{(A, B): F_{A}+\Lambda B=0\right\}
$$

4D Gravity is related to the above:

- $y=s 0(3,1) \cong \lambda^{2} \mathbb{R}^{4}$ (or sola) for Euclidean suavity)
- A further constraints

$$
p f(B)=0 \quad(\text { and } B \neq 0)
$$

which defines a Poisson submanitold of P

Part II Poirpons structures from graded umnífolds
A Poisson structure on a manifold M
is the same a function S of degree 2 in $T^{x} i \boldsymbol{M}$ st. $\{S, S\}=0$

Jun fact, $C^{\infty}\left(T^{x}[i] M\right)=\rho\left(\Lambda^{\circ} T M\right)$
$h, 3=[,]_{S N}$

Geveralization: allow M to be a pacaled manifldd itrett

$$
\begin{aligned}
& \Rightarrow \quad S \leadsto \pi=\pi_{0}+\pi_{1}+\pi_{2}+\cdots, \begin{array}{l}
\pi_{k} \in \Gamma\left(\Lambda^{k} T / \Lambda\right) \\
\\
\\
\operatorname{dep} \pi_{k}=2-k
\end{array} \\
& \quad\left\{b_{1}, \ldots, b_{k}\right\}_{k}=\pi_{k}\left(d h_{1}, \ldots, d l_{k}\right)
\end{aligned}
$$

L_{∞}-stictare by multidesivalions $=: P_{\infty}$

Notation We call such (M,S) a BF'V manifold

Further generalization:

1) Replace Jrich by any graded manifold $d l$ with symplectic form of depress 1 .
2) Write M ap $T^{x}[1] M$ (choice of polarization)

Example y finite diaerrimal Lie algebra
$\Rightarrow g^{*}$ Poisson manifold wa HKS Poisson strathote
~) $\mu=T^{*}[1] y^{*}=g^{*} \oplus y[1]$

$$
\pi=\pi_{2}=\pi_{k K S} \sim S
$$

We can also write $M=T^{*}[1] g[i]$
$S \leadsto \pi=\pi_{1}=\delta_{c E}$ chevalley-Eilenberg

A further peneralization:

- A praded Pairon alpebra (e.y.c.cs (TMTN) with $S \in A_{2}, \quad\{S, S\}=0$
- Splitize $A=h \oplus g$
h, g Poirpen subalpbries
(. . . $h=C^{\infty}(n)$ h abelian

$$
y=\Gamma\left(\Lambda^{0} T M\right)
$$

- Defire derived brackets on h [T.Vorsonor]

$$
\begin{aligned}
& \left\{g_{1}, \ldots, b_{k}\right\}_{k}:=P\left\{\cup\left\{\left\{s_{1}, b_{i}\right\}, b_{2}\right\}, \ldots, l_{k}\right\} \\
& \left.b_{i} \in h \quad P=\hat{h}\right\}
\end{aligned}
$$

Claim (BV) Field theories yield a $B F^{2} V$ structure on their codimension-2 corners $\xrightarrow{\text { Platariation } \text { Poison }}$ - structure

Pretty obvious in AKSZ theories

- Target $\left(Y, \omega_{y}=d \alpha_{y}, S_{y}\right)$

- Source $T^{x}[1] \Sigma$

- $b_{n} \mid h: k=n$
~ BV
corner: $k=h-z$
』 $B F^{2} V$

The two examples? pave at the pepirning are of this type

- Chern-Simons

$$
B F_{4}
$$

- Interesting non AHKS2 example:

GD Palatini-Cartan gravity
Thanks

