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Brownian motion experiments have become a staple of the undergraduate advanced laboratory, yet
quantification of these experiments is difficult, typically producing errors of 10%–15% or more.
Here, we discuss the individual sources of error in the experiment: sampling error, uncertainty in
the diffusion coefficient, tracking error, vibration, and microscope drift. We model each source of
error using theoretical and computational methods and compare the model to our experimental
data. Finally, we describe various ways to reduce each source of error to less than 1%, improving
the quantification of Brownian motion. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4803529]

I. INTRODUCTION

A classic experiment in the undergraduate advanced labo-
ratory is to measure Brownian motion by observing micro-
scopic particles in solution.1–13 The particles, contrary to our
everyday experience, do not fall directly to the bottom of the
sample chamber according to their density, but are instead
bombarded by solution molecules. The particles may move
left, then right, stop, descend, move backward, and stop
again, in a series of displacements collectively named
Brownian motion after the botanist Robert Brown, who
described this movement for pollen amyoblasts in 1828.14

The popularity of this experiment is due to both the sim-
plicity of the apparatus and the historical importance of the
data in proving the atomic nature of matter. At the turn of
the 20th century, prominent chemist and Nobelist Wilhelm
Ostwald posited that matter was a manifestation of energy,
rejecting the widespread atomistic view. To address this
debate, Einstein, in a landmark paper in 1905, theorized that
the random movements of a particle undergoing Brownian
motion could be completely explained by molecular-kinetic
theory.15 Because Einstein’s theory depended on the atomic
nature of matter, the subsequent measurement of Brownian
motion by Jean Baptiste Perrin16 was pivotal in proving the
atomistic view and earned Perrin the 1926 Nobel Prize.
Today, this historically significant experiment is used to
visualize a random walk and can also be used to measure a
number of interesting parameters: the viscosity of the solu-
tion,11 the Boltzmann constant,5,8 or Avogadro’s number,10

to name a few.
Unfortunately, the data obtained in these Brownian-

motion experiments are somewhat disappointing for stu-
dents, as measurements can easily be off by 10%–15% or
more.1,5,8,11,12 This large discrepancy between the measured
and nominal values generates a series of questions: What are
the dominant sources of error in the experiment? How much
error should we expect for a given source? And, how can we
reduce these sources of error?

Our goal is to address these questions and improve the
quantification of Brownian motion experiments. In Sec. II,
we discuss a simple implementation of the experiment that
produces measured results with errors of 15%–30%. In
Sec. III, we theoretically and computationally model a num-
ber of possible noise sources: sampling error, uncertainty in
the diffusion coefficient, tracking error, vibration, and micro-
scope drift. We compare our computational model of these
noise sources to our experimental data, highlighting the
largest sources of noise in the experiment and providing a

framework for calculating an expected noise value. Finally,
in Sec. IV, we discuss ways to minimize these noise sources
and produce results that are within 1% of the nominal value.
In this way, we hope to provide a method for both diagnos-
ing and reducing noise in Brownian motion measurements.

II. EXPERIMENTAL MATERIALS AND METHODS

In our implementation of the experiment [Fig. 1(a)],
micron-sized polystyrene beads (Invitrogen, Fluospheres,
Lot # 1154194, radius¼ 0.550 lm 6 3.2%) are diluted in
water and imaged using a microscope (Leitz, Labovert FS,
100" oil-immersion objective, numerical aperture¼ 1.3).
Concentrations at 0.09 pM (0.004% w/v) produce 10 or so
beads in the field of view. Sample chambers (30" 10
" 0:3 mm) are made by placing four pieces of double-sided
tape between a cover slip and a microscope slide.
Chambers are sealed with epoxy to prevent evaporation
and fluid flow. Beads typically spend #30 s in the field
of view.

To quantify Brownian motion, a megapixel camera
(Thorlabs DCC1545M, 5-ms exposure, 100-ms acquisition
time) records the movement and a software tracking program
(IMAGEJ, plugin MTRACK217) post-processes the images and
extracts the particle positions to form tracks [Figs. 1(b)–1(d)].
We analyze two videos to produce N¼ 15 tracks that each
contain 100 frames at 10 Hz. Collection of the data and proc-
essing of the tracks takes about an hour, perfect for a labora-
tory course.

Theoretically, the motion in x and y follows a random
walk such that the two-dimensional mean displacement hDri
is zero and the mean-squared-displacement (MSD) hDr2i is
given by

hDr2i ¼ hDx2iþ hDy2i ¼ 4Dt: (1)

Here, hDx2i and hDy2i are the one dimensional MSDs, D is
the diffusion coefficient, and t is the time between data
points. (On the time scale of our experiment, with a 100-ms
acquisition time, the average, two-dimensional root-mean-
squared (rms) displacement of 400 nm per frame will be
made up of many smaller steps. A back-of-the-envelope cal-
culation reveals that the mean-free-path of a 1-lm-diameter
bead is about 0.3 nm,18 three orders of magnitude smaller.
To visualize this motion, the online supplement to this
article19,32 includes a simulation in the IGOR programming
language that allows students to vary the parameters of an
idealized two-dimensional random walk of the bead.)
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This random walk, given by Eq. (1), varies with the diffu-
sion coefficient and time. The rms displacement increases in
proportion to

ffiffi
t
p

, allowing the bead to rapidly sample the
surrounding area on short timescales, yet requiring long
timescales to move greater distances. Brownian motion also
increases with increasing temperature T or decreasing bead
radius a, as both of these variables are wrapped up in the dif-
fusion coefficient

D ¼ kBT

6pga
¼ R

NA

T

6pga
: (2)

Here, kB is the Boltzmann constant, g is the viscosity of the
solution, R is the ideal gas constant, and NA is Avogadro’s
number. In a typical undergraduate laboratory students may
be asked to record data for #10 beads and to measure the
diffusion coefficient. Subsequent calculations may require
the students to solve for the Boltzmann constant, Avogadro’s
number, the radius of the bead, or the temperature of the
solution.

In our implementation of the experiment, we measure the
diffusion coefficient using the two most common methods. In
Method 1, we fit a Gaussian to the displacement histogram
[Fig. 1(e)], a histogram that bins all the independent, one-
dimensional displacements, both Dx and Dy, together. The
variance from the Gaussian fit is equivalent to the one-
dimensional MSD hDx2i if the mean displacement hDxi is zero

VarðDxÞ ¼ hDx2i' hDxi2: (3)

Because our data in hDxi and hDyi have a zero mean dis-
placement (6 6 8 nm and 0 6 8 nm, respectively), we can use
the variance of the displacement histogram to calculate D
through the one-dimensional random walk equation

hDx2i ¼ 2Dt: (4)

Using this method, we calculate D¼ 0.512 lm2/s, a differ-
ence of 15.1% from the nominal value of 0.445 lm2/s.
(Measurements were taken in water, g¼ 0.89 mPa-s, at a
temperature of 24:9 (C).

In Method 2, we calculate the two-dimensional MSD at
each time t using the equation

hDr2ðtÞi ¼

XNi

i¼1

½ðxðti þ tÞ ' xðtiÞÞ2 þ ðyðti þ tÞ ' yðtiÞÞ2*

Ni
;

(5)

where time ti refers to the time for the ith image in the track
and Ni is the number of images to compute the average over.
For example, if we would like to compute the MSD of the
t¼ 3 s time point for a track at 10 Hz, we would find the
squared displacement between images 1 and 31, images 2
and 32, images 3 and 33, and so on. The average of these
squared displacements would be the MSD at t¼ 3 s. After
the MSD for each track is calculated we create an ensemble
MSD by averaging all of the individual track MSDs
[Fig. 1(f)]. The diffusion coefficient is determined from
the slope of the ensemble MSD and Eq. (1) to be
D¼ 0.575 lm2/s, a difference of 29.2% from the nominal
value. Thus, both methods produce results with large errors
(15%–30%). Our goal is to identify the source of this error
through theoretical and computational modeling and to
reduce it.

III. THEORETICAL AND COMPUTATIONAL
MODELING OF ERROR

A. Sampling error

The noise floor in the experiment is set by sampling error.
Sampling error is a statistical error created when only a sub-
set of a population is sampled. The sampling error in
Brownian motion experiments varies with the method used
to determine the diffusion coefficient.

In Method 1, we measure the variance of a normally dis-
tributed variable, Dx or Dy. The sampling error, rsampling, in
this case, will then be the standard deviation of the variance.
The fractional sampling error is

Fig. 1. (Color online) A simple implementation of the Brownian-motion experiment produces data with 15%–30% error. (a) Cartoon showing a bright field
microscope that images micron-sized polystyrene beads undergoing Brownian motion in water. (b) Image taken at 100" magnification; beads (labeled 1 and
2) are just below the focal plane and appear black. (c) Post-processing produces a binary image. (d) The position of each particle in x and y is extracted for
each frame and placed into a track. (e) In Method 1, the diffusion coefficient is found by making a histogram of the displacements in both x and y (gray) and fit-
ting a Gaussian curve (black line) to the data; the standard deviation (dashed black lines) is used to calculate a diffusion coefficient of 0.512 lm2/s, a difference
of 15.1% from the nominal value. (f) In Method 2, the mean squared displacement (MSD) of each particle (gray) as a function of time is averaged together
(black) and the slope of the line is used to find a diffusion coefficient of 0.575 lm2/s, a difference of 29.2%. Labeled MSD traces correspond to the particles
shown in B through D.
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ðMethod 1Þ fractional rsampling ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

N ' 1

r
; (6)

as discussed in Appendix E in Taylor’s An Introduction to
Error Analysis.20 Here, N is the number of samples in the
histogram and the familiar expression N ' 1 is used to coun-
teract the underestimate of the fractional error when a subset
of the population is sampled. Thus, we would expect the
fractional rsampling in a measurement of D with 15 tracks
(100 frames per track) to be 0.026 or 2.6% (N¼ 3000 total
displacements from the two independent dimensions, x
and y).

In Method 2, we measure the MSD, which is the sum of
the squares of two normally distributed values. As such, we
would expect the MSD to follow a chi-squared distribution.
Thus, the rsampling would be the standard deviation in the
mean value of the distribution, which is just the familiar
standard error. The fractional sampling error would be

ðMethod 2Þ fractional rsampling ¼
1ffiffiffiffi
N
p : (7)

In this case, the fractional rsampling for 15 tracks would be
0.26 or 26%, indicating that Method 2 has a much larger
sampling error (by an order of magnitude) than Method 1. In
an undergraduate laboratory where data collection will be
limited, using Method 1 instead of Method 2 will decrease
the amount of sampling error substantially. However, if the
goal of the laboratory is to try to measure the viscosity of a
complex liquid that may have an elastic component,21 then
Method 2 should be used as it does not automatically depend
on the linearity of the MSD with time. We will continue to
discuss both methods, noting that each will have a large sam-
pling error.

In addition, we find that a computational simulation of
the experiment (see the MATLAB code in the online supple-
ment19) reproduces the theoretical sampling error for both
Method 1 and Method 2 [Figs. 2(a) and 2(b)]. The simula-
tion is based on a common procedure for measuring sam-
pling error20 that we and others22 have adapted for use in
Brownian motion experiments. We first create a series of
random steps in both x and y with the standard deviation

for each step set by the one dimensional random walk equa-
tion (4). We then concatenate the steps into a track and
measure the diffusion coefficient using the two methods.
The simulation parameters mirror the experimental varia-
bles (T ¼ 24:9 (C; g ¼ 0:892 mPa-s; a ¼ 0:550 lm, track
length¼ 100 frames, data rate¼ 10 Hz). In Method 1, we
simulate a particular number of tracks and find the diffusion
coefficient by measuring the variance of the x and y displace-
ment histogram. In Method 2, we calculate the average en-
semble MSD for all of the tracks and use the slope to
compute D. These procedures give us the diffusion coeffi-
cients for Method 1 and Method 2 for one data set. We repeat
this procedure 100 times to create 100 data sets with the
same number of tracks in each. We find that as the number
of tracks in a data set increases, the sampling error for both
methods decreases according to Eqs. (6) and (7). Overall,
some data sets fall outside the standard deviation set by the
sampling error, but most are within 2rsampling as expected.

Interestingly, the error in our initial measurement of D
using Method 2 can be explained entirely by sampling error,
but this is not the case for Method 1. The fractional sampling
error for Method 2 has a theoretical value of 26% (N¼ 15
tracks), close to the actual error of 29%. However, the exper-
imental error for Method 1 is 15%, while the fractional sam-
pling error for the measurement is only 2.6% (N¼ 3000
displacements). To explain this large discrepancy for
Method 1 we must turn to other sources of error.

B. Uncertainty in the diffusion coefficient

Measurement of the nominal diffusion coefficient will
have an error due to the uncertainty in the bead radius and
temperature. The uncertainty in the bead radius is due to the
size variation in the polystyrene beads, which is a Gaussian
distribution with a standard deviation given by the coeffi-
cient of variation. Typical values are 2%–10% depending on
the company and the size of the bead (Spherotech, Lot #
AD01, a¼ 0.693 lm 6 7.8%; Invitrogen, Lot # 1154194,
a¼ 0.550 lm 6 3.2%). The other independent variable, tem-
perature, could slowly vary over time at the level of
1(C ð0:3%Þ due to changes in room temperature or fluctua-
tions in illumination intensity. In addition, this temperature

Fig. 2. Simulated data show that the largest sources of error in the experiment are sampling error, tracking error, and vibration. (a) and (b) The diffusion coeffi-
cients (D) from 5,000 simulated data sets are plotted (gray circles) as a function of the number of tracks in a data set for either Method 1 or Method 2. The
standard deviation of the diffusion coefficient, r (thick black line), follows the theoretical sampling error for each method (yellow dashed line). The mean
value of the diffusion coefficient !D (thin black line) tracks the nominal diffusion coefficient D+, as expected. (c) through (f) Same data as in A and B (black
line) except with the following added sources of error: uncertainty in the bead radius and temperature (magenta line); tracking error (thick red line); drift (blue
filled circles); vibration (green line); and all of the above (gray dashed line). In (c) and (d) the fractional sample standard deviation r= !D remains virtually
unchanged by the sources of error, and all of the traces are on top of the theoretical sampling error (yellow line). In (e) the fractional difference between the
mean and nominal value of the diffusion coefficient DD=D+ shows that the simulated data with tracking error and vibration are above the noise floor set by
sampling error in Method 1. In Method 2 (f), the sampling error causes large fluctuations in DD=D+.
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variation will affect the macroscopic viscosity of water,
which is a known function of temperature23 (see the supple-
mentary MATLAB file19). Given this function, a temperature
uncertainty of 1(C would create a 2% uncertainty in the mac-
roscopic viscosity. Thus, we have two independent sources
of random error that contribute to the uncertainty in the nom-
inal diffusion coefficient: variation in the bead radius and
temperature fluctuations (for a discussion of systematic error
see Appendix A).

If we assume that both sources of error are random and in-
dependent, then the central limit theorem would suggest that
the uncertainty in D will be normally distributed and should
decay with the number of samples in the data set.24 To model
this phenomenon, we simulate the same data as in Figs. 2(a)
and 2(b), except instead of using the nominal value for the
diffusion coefficient to generate the data we simulate random
values from a Gaussian distribution for both the bead radius
(standard deviation of 18 nm) and temperature (standard
deviation of 1 (C). We use two metrics to measure the effect
of this source of error. In the first metric we measure the pre-
cision of the measurement of D by plotting the fractional
sample standard deviation of the data r= !D as a function of
the number of tracks in the data set [Figs. 2(c) and 2(d)]. For
Method 1, there is an increase of 0.2% in the fractional
standard deviation, just above the noise floor set by the sam-
pling error, but there is no change in Method 2. This means
that the scatter in the data will be set by sampling error and
will not be affected by the uncertainty in the diffusion coeffi-
cient. In the second metric accuracy is measured by subtract-
ing the nominal value of the diffusion coefficient D+ from
the simulated mean value !D and dividing by the nominal
value [Figs. 2(e) and 2(f)]. For both Method 1 and Method 2,
!D is not affected by the uncertainty in bead radius or temper-
ature. These findings lead us to conclude that these uncer-
tainties are small enough to be ignored in our experiment
and should not factor into our calculation of error.

C. Tracking error

Brownian motion experiments also suffer from tracking
error—the uncertainty in extracting the time and location of
a bead in a series of images. Timing uncertainty is generally
set by the image acquisition system and decreases if the
exposure time (5 ms) is much less than the acquisition time
(100 ms). In our system, timing uncertainty is 1–10 ms per
frame at 10 Hz, which translates into a positional uncertainty
of 1–15 nm. The uncertainty in locating the centroid of the
bead is comparatively higher. In MTRACK2, bead location is
found by using the IMAGEJ “Measure” command, which cal-
culates the centroid by taking the mean value of all of the (x,
y) pixel coordinates in the particle (a binary image of the
bead). The error in finding this value is just the standard error
of the mean, r=

ffiffiffiffi
N
p

. If the particle is a perfect circle, then
the standard deviation of the centroid will be equal to half
the radius of the circle, while the number of pixels N will be
given by the area of the circle. The standard error then
reduces to r=

ffiffiffiffi
N
p
¼ ða=2Þ=

ffiffiffiffiffiffiffi
pa2
p

¼ 1=ð2
ffiffiffi
p
p
Þ, or 0.28 pixels

(15 nm), and surprisingly does not depend on bead size. In
practice, though, the error in tracking the centroid is closer
to 1 pixel (60 nm) due to the irregular shape of the particle.
Tracking error improves for beads within the focal plane as
the higher contrast of the image enhances detection and
increases the circularity of the particle. Here, we will take
into account both timing and positional uncertainty to find

the effect of tracking error on the measured diffusion
coefficient.

To see the effect of tracking error, we simulate random
values from a Gaussian distribution for both the uncertainty
in the timing interval (standard deviation of 10 ms) and
the particle position (standard deviation of 60 nm). Timing
errors are converted into positional errors using the one-
dimensional random-walk equation and added to the posi-
tional error in tracking the centroid, before calculating D
using the two methods [Figs. 2(c)–2(f)]. In Method 1, we see
an increase in the mean value of D by 8% due to tracking
error. In contrast, the diffusion coefficient measured by
Method 2 does not change at all. We might expect this to be
the case as a tracking error of 60 nm would be relatively
large compared to the displacement between frames (300 nm
at 10 Hz) used in Method 1. In comparison, tracking error
would be fairly small compared to the movement over the
entire track (3 lm at 10 s) used in Method 2. We conclude
from this simulation that we need to account for tracking
error only when using Method 1.

D. Drift or vibrational noise

Typically, mechanical noise in the experiment can be bro-
ken down into two components: a drift between the sample
and the objective that occurs over tens of seconds, and
a faster vibration that causes jitter in the microscope.
While our typical microscope drift is on order 1 nm/s (see
Appendix B) due to settling of the focus knob, thermal
expansion of the sample, or other low frequency mechanical
noise, the most substantial source of drift in Brownian-
motion experiments is fluid flow. Fluid flow (on orders of
0.01–10 lm/s in our samples) can occur because of evapora-
tion, convection, the presence of bubbles, or the addition or
removal of liquid from the sample. To prevent fluid flow
and measure an average bead displacement of zero as in
Fig. 1(e), samples should be sealed without bubbles and
allowed to equilibrate for a few minutes. Equilibration over
longer times (hours) should be avoided as this will cause set-
tling of the beads.25 The other source of mechanical noise,
vibration, can cause movements at the level of 20–50 nm per
frame at 10 Hz. Larger vibrations are also possible; for
instance, touching the microscope or table may cause the
sample to suddenly shift by several microns in one frame.
Thus, noise sources may be problematic.

To model the effect of drift and vibrational noise on the
measurement of the diffusion coefficient, we again use our
simulated data from Figs. 2(a) and 2(b) and this time incor-
porate errors due to these noise sources. To simulate drift,
we add a constant to the one dimensional displacement in y
corresponding to 100 nm/s. Vibration is simulated by adding
a random value to the x and y displacements from a
Gaussian distribution with a standard deviation of 50 nm
[Figs. 2(c)–2(f)]. We find that the simulated drift and vibra-
tional noise have a large effect, increasing !D by 3% in
Method 1 (all due to vibrational noise) and 5% in Method 2
(3.5% from vibrational noise and 1.5% from drift) over the
shown range. What is interesting is that even though the per-
cent increase in !D is higher in Method 2, the fluctuations
due to sampling error are at about the same level. Therefore,
sampling error is really the dominant source of error in
Method 2, rendering all other sources of error negligible.
However, if we further increase drift to 200 nm/s and vibra-
tional noise to a standard deviation of 100 nm, then !D
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increases by 11% in Method 1 and by 18% in Method 2.
Even greater differences between the measured and nominal
values are possible. For example, data can be off by factors
of ten or more if there is fluid flow of 1 lm/s, highlighting
just how important it is to reduce this source of error.
Reduction of drift to less than 50 nm/s and vibration to
within a standard deviation of 30 nm at 10 Hz produces neg-
ligible errors according to our computational model.

E. Multiple sources of error

In addition to modeling individual sources of error, we
also modeled the total error in our system due to all of the
different noise sources. Interestingly, drift, vibration, and
tracking error all increase !D, indicating that the experiment
will tend to overestimate the diffusion coefficient if these
noise sources are present. We also note that the individual
sources of error add together to give the total error for the
data. Therefore, for Method 1, we would expect a measure-
ment of D that is higher than the nominal value due to the
errors associated with tracking error and vibrational noise. If
we assume that there is an 11% error due to either tracking
error or vibration, then we would expect Method 1 to pro-
duce a value within 2rsampling (6%) of 0.494 lm2/s, which is
higher than the nominal diffusion coefficient of 0.445 lm2/s.
Our experimental measurement of 0.512 lm2/s agrees with
this computational prediction. We would expect Method 2 to
produce a result that is dominated by sampling error, which
is the case.

Based on our computational model, we conclude that
even though Method 1 produces a much more precise
result, Method 2 might be more appropriate for the under-
graduate laboratory. Method 1 requires calculation of the
error from 3 to 4 different noise sources (sampling error,
tracking error, vibration, and possibly uncertainty in bead
radius and temperature), requiring a large amount of lab
time to be spent on error analysis. In comparison, Method 2
is dominated by a large sampling error that is easily calcu-
lated by the students. The drawback with Method 2 is that it
requires a large amount of data to measure the diffusion
coefficient precisely. Alternatively, Method 1 can be imple-
mented successfully in the undergraduate laboratory if the
experiment is designed to minimize tracking error and
vibrational noise.

IV. REDUCING ERROR

A. Experimental methods to reduce error

To improve the quantification of Brownian motion meas-
urements, we employ several experimental techniques to
reduce drift, vibration, and tracking error. First, we mount a
microscope (Olympus BX-51WI, 40" water-immersion
objective) onto a vibration-isolation table, reducing drift to
<1 nm=s and vibration to <15 nm at 10 Hz. Further stabiliza-
tion of the sample is possible in this configuration,26 but was
not implemented as this level of noise should be negligible
according to our simulation. Second, we improve tracking
error by (i) using a camera (Coolsnap EZ, Photometrics)
with a higher quantum efficiency that improves image con-
trast, and by (ii) tracking beads with a program written in
MATLAB.27,28 Switching to this program allows for increased
functionality in both post-processing of the images and in
setting the tracking parameters. Correct implementation of

this program limits tracking error to less than 20 nm.27 With
this improved experiment we measure a diffusion coefficient
of 0:418 6 0:004 lm2=s (mean 6 2rsampling) using Method 1
and 0:45 6 0:04 lm2=s using Method 2 (400 tracks, 100
frames per track, 10 Hz; see Fig. 3). Both measurements
agree with the nominal value of 0.415 lm2/s (T ¼ 22:4 (C,
g¼ 0.946 mPa-s, a ¼ 0:550 lm). Thus, by reducing vibra-
tional noise, drift, and tracking error we are able to produce
a measurement with Method 1 that is within 1% of the nomi-
nal value.

In addition, we find that image processing is improved if
data is taken with an epifluorescence microscope (Olympus
BX-51WI) that images fluorescent beads. Previous work has
already discussed the use of inexpensive fluorescent micro-
scopes in Brownian motion experiments, showing the feasibil-
ity of the technique in the undergraduate laboratory.12 Here,
we show that image contrast is much higher [Figs. 3(a) and
3(b)], eliminating the need to perform image background sub-
traction and reducing tracking error. In Figs. 3(c) and 3(d), we
use this technique to track 200 beads (100 frames, 10 Hz) and
measure a diffusion coefficient of 0:43260:006 lm2=s using
Method 1 and 0:4560:06 lm2=s using Method 2. Both of
these values agree with the nominal value of 0.430 lm2/s

Fig. 3. Reduction of experimental noise produces measurements of D within
1%. Either bright field microscopy (a) or epifluorescence microscopy (b) can
be used; however, fluorescence images have a higher contrast and do not
require background subtraction. (c) and (d) Measurements of the diffusion
coefficient D using Method 1 are found by fitting a Gaussian (black line) to
a histogram of the tracked displacements (gray) to find the standard devia-
tion (black dashed line). For bright field microscopy in (c), D is
0:418 6 0:004 lm2=s (mean 6 2rsampling), within error of the nominal value
of 0.415 lm2/s. For epifluorescence microscopy in (d), D is
0:432 6 0:006 lm2=s, also within error of the nominal value of 0.430 lm2/s.
(e) and (f) Measurements of D using Method 2 are found by fitting the slope
of an averaged ensemble MSD (black) made up of individual MSDs for each
track (gray). Here, D is found to be 0:4560:04 lm2=s using bright field mi-
croscopy in (e), while fluorescence microscopy in (f) gives a D of
0:4560:06 lm2=s, both within error of the nominal values.
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(T ¼ 23:6 (C; g ¼ 0:919 mPa' s; a ¼ 0:550 lm). Thus, the
diffusion coefficient measured using Method 1 is still within
1% of the nominal value, yet the data analysis is markedly
faster.

B. Computational methods to reduce error

While we have shown that experimental improvements
can greatly increase the accuracy of Brownian motion meas-
urements, these improvements are both costly and time con-
suming. An alternative technique would be to use Method 2
and to combine the data from all of the different groups in
the laboratory or to use a resampling technique29 to increase
the precision. However, even in this case, the sampling error
in Method 2 can be prohibitively high; it requires 100 tracks
to get a 10% sampling error. Ideally, then, we would like to
use Method 1 because the sampling error is much lower. The
problem is that we need to be able to reduce the other sour-
ces of error without resorting to expensive changes in the
experimental apparatus. Here we seek to reduce the error in
Method 1 though computational approaches.

Tracking error is the largest error in Method 1, and fortu-
nately it can be reduced by improving the centroid-tracking
algorithm. At first we decided to analyze our original
data (Sec. II) with the MATLAB program27 used previously. The
greater functionality of this program allows us to easily opti-
mize the input parameters to achieve accurate centroid-finding

to within an estimated 20 nm. However, early on we noticed
that the most important input parameter in the program is the
one that sets the threshold for pixels to be included in the par-
ticle. The optimum setting allowed only beads that were in
focus to be tracked, as the increased image contrast reduced
the tracking error. This data suggested that it might be possi-
ble to reproduce the same results using IMAGEJ. Here we show
that both MTRACK2 and the MATLAB program27 produce similar
tracks when processing the same images of a bead freely dif-
fusing in solution or when processing images of a bead stuck
to the cover slip (Fig. 4). The key is to set the threshold in
IMAGEJ such that only beads that are in focus are tracked. If
this simple change is made, we estimate that the tracking
error is about the same in both cases. We then reanalyze our
original data with the increased threshold value so that we
only track beads within a small focal depth of a few hundred
nanometers. To remove bias, the track length is decreased to
10 frames at 10 Hz as most beads spend >1 s in range.
Amazingly, the new measured diffusion coefficient is within
1% of the nominal value at 0.450 lm2/s (180 tracks,
N ¼ 10 000) as the mechanical noise is negligible (see
Appendix B). This improvement does not require any addi-
tional equipment but does require some practice on the part of
the user to select the appropriate threshold.

V. CONCLUSIONS

Here, we have shown that the large (#15%) errors present
in Brownian motion experiments are from several sources:
sampling error, uncertainty in the diffusion coefficient, track-
ing error, vibration, and drift. Theoretical, computational,
and experimental determinations of these sources of error
show that the contribution of each is set by the method used
to calculate the diffusion coefficient, Method 1 or Method 2.
In Method 1, sampling error (and possibly the uncertainty in
bead radius and temperature) will set the precision of the
measurement, while tracking error and vibrational noise will
cause an overestimate in the diffusion coefficient. In Method
2, both the precision and accuracy of the measured diffusion
coefficient will be dominated by sampling error. When we
reduce these sources of error (sampling error, tracking error,
vibration, and drift) we are able to measure the diffusion
coefficient to within 1% of the nominal value.

We hope this work will serve as a guide for faculty look-
ing to improve the quantification of Brownian motion experi-
ments, allowing students to focus on the science that
convinced Otswald of the atomic nature of matter.
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APPENDIX A: SYSTEMATIC UNCERTAINTY IN
THE DIFFUSION COEFFICIENT

If the uncertainty in D is systematic, not random, then we
will miscalculate the nominal value of D. Systematic errors
in the bead radius can be estimated by finding the standard
deviation of the mean bead radius, which depends on the

Fig. 4. Tracking with IMAGEJ or with a MATLAB program produces similar
results. (a) We track a single bead undergoing Brownian motion in water
with IMAGEJ MTRACK2 (gray closed circles), and a MATLAB tracking program
with an improved centroid-finding algorithm27 (black open circles). (b)
We also track a bead stuck to the surface with both programs (colors
same as in a).
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number of beads used to determine the value. Typical counts
are on the order of #500 beads (Invitrogen and Spherotech),
indicating that the fractional standard error of the mean is
0.1% and can be ignored. Systematic errors in the tempera-
ture are much more problematic. For our experimental setup
we measure the average temperature at the sample plane to
be up to 1:2 (C higher than the average room temperature,
due to heating by the illumination system. If room tempera-
ture is used, this would produce an underestimate in the
nominal value of D by 3% and an overestimate in the
Boltzmann constant by the same amount. Previously
reported overestimates12 in the Boltzmann constant may be
due to this systematic error. Other systematic errors include
a well-known overestimate in the diffusion coefficient when
the bead is proximal to the sample surface or to another
bead.30 We use large sample chambers (300 lm thick) and
dilute solutions (#10 lm between beads) so that the correc-
tion in the diffusion coefficient is <0:5%. Thus, while sys-
tematic errors in the nominal value should be taken into
account, careful planning of the experiment by the faculty
member can eliminate these systematic errors.

APPENDIX B: REDUCTION OF VIBRATIONAL
NOISE

To use Method 1 to accurately measure the diffusion coef-
ficient we need to reduce tracking error and vibrational
noise. In our original data (Sec. II), the mechanical noise in
the system is actually quite low. Figure 4(b) shows that the
microscope drift is about 1 nm/s for the 800-s trace. The
vibration as measured by the standard deviation for the trace
is #20 nm at 10 Hz. In addition, there is no fluid flow in the
sample as the average bead displacement is zero [Fig. 1(e)].
According to our simulation, both drift and vibration at that
level would be negligible. This was unexpected since the
microscope is located on the second floor in a high-traffic
area and does not have an active vibration-isolation system.
However, the microscope used for the experiment does sit on
a large cast iron table that passively reduces mechanical
noise. For other faculty that are not as lucky, there are so-
phisticated “de-drifting” algorithms that measure the corre-
lated noise between a series of beads in a frame and remove
this correlated motion.27,31 In this case, switching to MATLAB

tracking software would be one way to computationally
remove mechanical noise. In addition, similar passive sys-
tems can be purchased for a fraction of the cost of an active
vibration-isolation system.
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