Polarity, Formal Charge, and Resonance
 Flash Review

CHEM 371
Dr. Christopher B. Durr

© 2019 by Christopher Durr, Polarity, Formal Charge, and Resonance Flash Review. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Polarity

Tetrahedral

Methane
Non-Polar

Trigonal
Pyramid

Ammonia
Polar

Bent

Polar

Non-Polar
Bond dipoles are equivalent and
cancel out

Linear

Trigonal
Planar

Tetrahedral

Trigonal
Bipyramidal
Trigonal
Bipyramidal

Polar
Bond dipoles are inequivalent and do not cancel out

Linear

Trigonal
Planar

Tetrahedral

Trigonal
Bipyramidal

Polarity

Number of Lone Pairs

Calculating Formal Charge

$$
\text { Formal Charge }=\begin{gathered}
\text { \# of electrons } \\
\text { in free atom }
\end{gathered}-\begin{gathered}
\text { \# of electrons } \\
\text { assigned in molecule }
\end{gathered}
$$

$$
\begin{gathered}
\text { \# of electrons } \\
\text { assigned in molecule }
\end{gathered}=\begin{gathered}
\text { \# of electrons } \\
\text { from lone pairs }
\end{gathered}+1 / 2 \begin{gathered}
\text { \# of electrons } \\
\text { shared in bonds }
\end{gathered}
$$

Sum of formal charges agrees with overall charge

Large Absolute Formal Charge

Calculating Formal Charge

$$
\text { Formal Charge }=\begin{gathered}
\text { \# of electrons } \\
\text { in free atom }
\end{gathered}-\begin{gathered}
\text { \# of electrons } \\
\text { assigned in molecule }
\end{gathered}
$$

$\begin{gathered}\text { \# of electrons } \\ \text { assigned in molecule }\end{gathered}=\begin{gathered}\text { \# of electrons } \\ \text { from lone pairs }\end{gathered}+1 / 2 \begin{gathered}\text { \# of electrons } \\ \text { shared in bonds }\end{gathered}$

0 electrons from lone pairs

Sum of formal charges agrees with overall charge

Reduced Formal Charge

Examples of Formal Charge

N_{2}

CN^{-}
CO
NO^{+}

$: N \equiv N$:

$: \mathrm{C} \equiv \mathrm{O}:$
$[: N \equiv \mathrm{O}:]^{+}$

$$
\begin{aligned}
\mathrm{N} & =5-(2+1 / 2(6)) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{N} & =5-(2+1 / 2(6)) \\
& =0 \\
\mathbf{C} & =4-(2+1 / 2(6)) \\
& =-1
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{C} & =4-(2+1 / 2(6)) \\
& =-1
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{N} & =5-(2+1 / 2(6)) \\
& =0
\end{aligned}
$$

$0=6-(2+1 / 2(6))$

$$
0=6-(2+1 / 2(6))
$$

Dipole
Towards C

Dipole
Towards N

Resonance

Resonance Hybrids result from two or more Resonance Contributors.
Please note, electrons are not shifting back and forth, this is importantly not an interconverting equilibrium.

